Logo of Humboldt-Universität zu BerlinLogo of Humboldt-Universität zu Berlin
edoc-Server
Open-Access-Publikationsserver der Humboldt-Universität
de|en
Header image: facade of Humboldt-Universität zu Berlin
View Item 
  • edoc-Server Home
  • Schriftenreihen und Sammelbände
  • Fakultäten und Institute der HU
  • Institut für Mathematik
  • Preprints aus dem Institut für Mathematik
  • View Item
  • edoc-Server Home
  • Schriftenreihen und Sammelbände
  • Fakultäten und Institute der HU
  • Institut für Mathematik
  • Preprints aus dem Institut für Mathematik
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.
All of edoc-ServerCommunity & CollectionTitleAuthorSubjectThis CollectionTitleAuthorSubject
PublishLoginRegisterHelp
StatisticsView Usage Statistics
All of edoc-ServerCommunity & CollectionTitleAuthorSubjectThis CollectionTitleAuthorSubject
PublishLoginRegisterHelp
StatisticsView Usage Statistics
View Item 
  • edoc-Server Home
  • Schriftenreihen und Sammelbände
  • Fakultäten und Institute der HU
  • Institut für Mathematik
  • Preprints aus dem Institut für Mathematik
  • View Item
  • edoc-Server Home
  • Schriftenreihen und Sammelbände
  • Fakultäten und Institute der HU
  • Institut für Mathematik
  • Preprints aus dem Institut für Mathematik
  • View Item
2005-11-03Buch DOI: 10.18452/2586
On Halanay-type analysis of exponential stability for the theta-Maruyama method for stochastic delay differential equations
Baker, Christopher T. H.
Buckwar, Evelyn
Using an approach that has its origins in work of Halanay, we consider stability in mean square of numerical solutions obtained from the theta-Maruyama discretization of a test stochastic delay differential equation dX(t) = {f(t) -alpha X(t) + beta X(t - tau)} {dt + {g(t) + eta X(t) + mu X (t - tau) } dW(t), interpreted in the Itô sense, where W(t) denotes a Wiener process. We focus on demonstrating that we may use techniques advanced in a recent report by Baker and Buckwar to obtain criteria for asymptotic and exponential stability, in mean square, for the solutions of the recurrence Xn+1 - Xn = theta h {fn+1 - alpha Xn+1 + beta Xn+1 - N} + + (1-theta) h {fn - alpha Xn + beta Xn-N} + sqrt{h} (gn + eta Xn + mu Xn-N) xi n (xi n in N (0,1)).
Files in this item
Thumbnail
14.pdf — Adobe PDF — 167.7 Kb
MD5: 4252e6b9d04c9cb95e72cf042be9068a
Cite
BibTeX
EndNote
RIS
InCopyright
Details
DINI-Zertifikat 2019OpenAIRE validatedORCID Consortium
Imprint Policy Contact Data Privacy Statement
A service of University Library and Computer and Media Service
© Humboldt-Universität zu Berlin
 
DOI
10.18452/2586
Permanent URL
https://doi.org/10.18452/2586
HTML
<a href="https://doi.org/10.18452/2586">https://doi.org/10.18452/2586</a>