General Linear Methods for nonlinear DAEs in Circuit Simulation
dc.contributor.author | Voigtmann, Steffen | |
dc.date.accessioned | 2017-06-15T17:39:34Z | |
dc.date.available | 2017-06-15T17:39:34Z | |
dc.date.created | 2005-11-03 | |
dc.date.issued | 2005-11-03 | |
dc.identifier.issn | 0863-0976 | |
dc.identifier.uri | http://edoc.hu-berlin.de/18452/3244 | |
dc.description.abstract | The Modified Nodal Analysis leads to differential algebraic equations with properly stated leading terms. In this article a special structure of the DAEs modelling electrical circuits is exploited in order to derive a new decoupling for nonlinear index-2 DAEs. This decoupling procedure leads to a solvability result and is also used to study general linear methods, a class of numerical schemes that covers both Runge-Kutta and linear multistep methods. Convergence for index-2 DAEs is proved. | eng |
dc.language.iso | eng | |
dc.publisher | Humboldt-Universität zu Berlin, Mathematisch-Naturwissenschaftliche Fakultät II, Institut für Mathematik | |
dc.rights.uri | http://rightsstatements.org/vocab/InC/1.0/ | |
dc.subject | differential-algebraic equations | eng |
dc.subject | Methods for differential-algebraic equations | eng |
dc.subject | Implicit equations | eng |
dc.subject.ddc | 510 Mathematik | |
dc.title | General Linear Methods for nonlinear DAEs in Circuit Simulation | |
dc.type | book | |
dc.identifier.urn | urn:nbn:de:kobv:11-10052262 | |
dc.identifier.doi | http://dx.doi.org/10.18452/2592 | |
local.edoc.pages | 8 | |
local.edoc.type-name | Buch | |
local.edoc.container-type | series | |
local.edoc.container-type-name | Schriftenreihe | |
local.edoc.container-year | 2004 | |
dc.identifier.zdb | 2075199-0 | |
bua.series.name | Preprints aus dem Institut für Mathematik | |
bua.series.issuenumber | 2004,20 |