Logo of Humboldt-Universität zu BerlinLogo of Humboldt-Universität zu Berlin
edoc-Server
Open-Access-Publikationsserver der Humboldt-Universität
de|en
Header image: facade of Humboldt-Universität zu Berlin
View Item 
  • edoc-Server Home
  • Schriftenreihen und Sammelbände
  • Fakultäten und Institute der HU
  • Institut für Mathematik
  • Preprints aus dem Institut für Mathematik
  • View Item
  • edoc-Server Home
  • Schriftenreihen und Sammelbände
  • Fakultäten und Institute der HU
  • Institut für Mathematik
  • Preprints aus dem Institut für Mathematik
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.
All of edoc-ServerCommunity & CollectionTitleAuthorSubjectThis CollectionTitleAuthorSubject
PublishLoginRegisterHelp
StatisticsView Usage Statistics
All of edoc-ServerCommunity & CollectionTitleAuthorSubjectThis CollectionTitleAuthorSubject
PublishLoginRegisterHelp
StatisticsView Usage Statistics
View Item 
  • edoc-Server Home
  • Schriftenreihen und Sammelbände
  • Fakultäten und Institute der HU
  • Institut für Mathematik
  • Preprints aus dem Institut für Mathematik
  • View Item
  • edoc-Server Home
  • Schriftenreihen und Sammelbände
  • Fakultäten und Institute der HU
  • Institut für Mathematik
  • Preprints aus dem Institut für Mathematik
  • View Item
2005-11-03Buch DOI: 10.18452/2597
Asymptotic mean-square stability of two-step methods for stochastic ordinary differential equations
Buckwar, Evelyn
Horváth-Bokor, Rosza
Winkler, Renate
We deal with linear multi-step methods for SDEs and study when the numerical appro\-xi\-mation shares asymptotic properties in the mean-square sense of the exact solution. As in deterministic numerical analysis we use a linear time-invariant test equation and perform a linear stability analysis. Standard approaches used either to analyse deterministic multi-step methods or stochastic one-step methods do not carry over to stochastic multi-step schemes. In order to obtain sufficient conditions for asymptotic mean-square stability of stochastic linear two-step-Maruyama methods we construct and apply Lyapunov-type functionals. In particular we study the asymptotic mean-square stability of stochastic counterparts of two-step Adams-Bashforth- and Adams-Moulton-methods, the Milne-Simpson method and the BDF method.
Files in this item
Thumbnail
25.pdf — Adobe PDF — 203.9 Kb
MD5: 14c0fa5c31d1d44e76f1b5fae95be118
Cite
BibTeX
EndNote
RIS
InCopyright
Details
DINI-Zertifikat 2019OpenAIRE validatedORCID Consortium
Imprint Policy Contact Data Privacy Statement
A service of University Library and Computer and Media Service
© Humboldt-Universität zu Berlin
 
DOI
10.18452/2597
Permanent URL
https://doi.org/10.18452/2597
HTML
<a href="https://doi.org/10.18452/2597">https://doi.org/10.18452/2597</a>