Logo of Humboldt-Universität zu BerlinLogo of Humboldt-Universität zu Berlin
edoc-Server
Open-Access-Publikationsserver der Humboldt-Universität
de|en
Header image: facade of Humboldt-Universität zu Berlin
View Item 
  • edoc-Server Home
  • Schriftenreihen und Sammelbände
  • Fakultäten und Institute der HU
  • Institut für Mathematik
  • Preprints aus dem Institut für Mathematik
  • View Item
  • edoc-Server Home
  • Schriftenreihen und Sammelbände
  • Fakultäten und Institute der HU
  • Institut für Mathematik
  • Preprints aus dem Institut für Mathematik
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.
All of edoc-ServerCommunity & CollectionTitleAuthorSubjectThis CollectionTitleAuthorSubject
PublishLoginRegisterHelp
StatisticsView Usage Statistics
All of edoc-ServerCommunity & CollectionTitleAuthorSubjectThis CollectionTitleAuthorSubject
PublishLoginRegisterHelp
StatisticsView Usage Statistics
View Item 
  • edoc-Server Home
  • Schriftenreihen und Sammelbände
  • Fakultäten und Institute der HU
  • Institut für Mathematik
  • Preprints aus dem Institut für Mathematik
  • View Item
  • edoc-Server Home
  • Schriftenreihen und Sammelbände
  • Fakultäten und Institute der HU
  • Institut für Mathematik
  • Preprints aus dem Institut für Mathematik
  • View Item
2005-11-03Buch DOI: 10.18452/2604
Linear index-1 DAEs: regular and singular problems
Riaza, Ricardo
März, Roswitha
Several features and interrelations of projector methods and reduction techniques for the analysis of linear time-varying differential-algebraic equations (DAEs) are addressed in this work. The application of both methodologies to regular index-1 problems is reviewed, leading to some new results which extend the scope of reduction techniques through a projector approach. Certain singular points are well accommodated by reduction methods; the projector framework is adapted in this paper to handle (not necessarily isolated) singularities in an index-1 context. The inherent problem can be described in terms of a scalarly implicit ODE with continuous operators, in which the leading coefficient function does not depend on the choice of projectors. The nice properties of projectors concerning smoothness assumptions are carried over to the singular setting. In analytic problems, the kind of singularity arising in the scalarly implicit inherent ODE is also proved independent of the choice of projectors. The discussion is driven by a simple example coming from electrical circuit theory. Higher index cases and index transitions are the scope of future research.
Files in this item
Thumbnail
6.pdf — Adobe PDF — 300.8 Kb
MD5: f49ac0bde43c4c85c261633bcd416963
Cite
BibTeX
EndNote
RIS
InCopyright
Details
DINI-Zertifikat 2019OpenAIRE validatedORCID Consortium
Imprint Policy Contact Data Privacy Statement
A service of University Library and Computer and Media Service
© Humboldt-Universität zu Berlin
 
DOI
10.18452/2604
Permanent URL
https://doi.org/10.18452/2604
HTML
<a href="https://doi.org/10.18452/2604">https://doi.org/10.18452/2604</a>