Logo of Humboldt-Universität zu BerlinLogo of Humboldt-Universität zu Berlin
edoc-Server
Open-Access-Publikationsserver der Humboldt-Universität
de|en
Header image: facade of Humboldt-Universität zu Berlin
View Item 
  • edoc-Server Home
  • Schriftenreihen und Sammelbände
  • Fakultäten und Institute der HU
  • Institut für Mathematik
  • Preprints aus dem Institut für Mathematik
  • View Item
  • edoc-Server Home
  • Schriftenreihen und Sammelbände
  • Fakultäten und Institute der HU
  • Institut für Mathematik
  • Preprints aus dem Institut für Mathematik
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.
All of edoc-ServerCommunity & CollectionTitleAuthorSubjectThis CollectionTitleAuthorSubject
PublishLoginRegisterHelp
StatisticsView Usage Statistics
All of edoc-ServerCommunity & CollectionTitleAuthorSubjectThis CollectionTitleAuthorSubject
PublishLoginRegisterHelp
StatisticsView Usage Statistics
View Item 
  • edoc-Server Home
  • Schriftenreihen und Sammelbände
  • Fakultäten und Institute der HU
  • Institut für Mathematik
  • Preprints aus dem Institut für Mathematik
  • View Item
  • edoc-Server Home
  • Schriftenreihen und Sammelbände
  • Fakultäten und Institute der HU
  • Institut für Mathematik
  • Preprints aus dem Institut für Mathematik
  • View Item
2005-11-04Buch DOI: 10.18452/2629
Modeling of Uncertainty for the Real-Time Management of Power Systems
Gröwe-Kuska, Nicole
Nowak, Matthias Peter
Wegner, Isabel
A major issue in the application of multistage stochastic programming to model the cost-optimal generation and trading of electric power is the approximation of the underlying stochastic data processes by tree-structured schemes. We present a methodology for the generation of scenario trees for the stochastic load process from historical load profiles. The statistical modeling of the load process exploits the decomposition of the load process into a daily mean load process and a mean-corrected load series. The probability distribution of the load process over the optimization horizon is derived by using a time series model for the daily mean load process and regression models for the mean-corrected load series. We utilize the explicit representation of the distribution to compute approximate load scenarios and their probabilities. In a final step we reduce the number of load scenarios by a scenario deletion procedure. We report on the application of our approach to the cost-optimal generation of electric power in the hydro-thermal generation system of a German power utility.
Files in this item
Thumbnail
4.pdf — Adobe PDF — 2.186 Mb
MD5: d7ff200b190d2235c21a86c5e34e44a7
Cite
BibTeX
EndNote
RIS
InCopyright
Details
DINI-Zertifikat 2019OpenAIRE validatedORCID Consortium
Imprint Policy Contact Data Privacy Statement
A service of University Library and Computer and Media Service
© Humboldt-Universität zu Berlin
 
DOI
10.18452/2629
Permanent URL
https://doi.org/10.18452/2629
HTML
<a href="https://doi.org/10.18452/2629">https://doi.org/10.18452/2629</a>