Logo of Humboldt-Universität zu BerlinLogo of Humboldt-Universität zu Berlin
edoc-Server
Open-Access-Publikationsserver der Humboldt-Universität
de|en
Header image: facade of Humboldt-Universität zu Berlin
View Item 
  • edoc-Server Home
  • Schriftenreihen und Sammelbände
  • Fakultäten und Institute der HU
  • Institut für Mathematik
  • Preprints aus dem Institut für Mathematik
  • View Item
  • edoc-Server Home
  • Schriftenreihen und Sammelbände
  • Fakultäten und Institute der HU
  • Institut für Mathematik
  • Preprints aus dem Institut für Mathematik
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.
All of edoc-ServerCommunity & CollectionTitleAuthorSubjectThis CollectionTitleAuthorSubject
PublishLoginRegisterHelp
StatisticsView Usage Statistics
All of edoc-ServerCommunity & CollectionTitleAuthorSubjectThis CollectionTitleAuthorSubject
PublishLoginRegisterHelp
StatisticsView Usage Statistics
View Item 
  • edoc-Server Home
  • Schriftenreihen und Sammelbände
  • Fakultäten und Institute der HU
  • Institut für Mathematik
  • Preprints aus dem Institut für Mathematik
  • View Item
  • edoc-Server Home
  • Schriftenreihen und Sammelbände
  • Fakultäten und Institute der HU
  • Institut für Mathematik
  • Preprints aus dem Institut für Mathematik
  • View Item
2000-03-28Buch DOI: 10.18452/2646
Cyclotomic Curve Families over Elliptic Curves with Complete Picard-Einstein Metric
Holzapfel, Rolf-Peter
According to a problem of Hirzebruch we look for models of biproducts of elliptic CM-curves with Picard modular structure. We introduce the singular mean value of crossing elliptic divisors on surfaces and determine its maximum for all abelian surfaces. For any maximal crossing elliptic divisor on an abelian surface A we construct infinite towers of coverings of A whose members, inclusively A, are contracted compactified ball quo- tients. On this way we find towers of Picard modular surfaces of the Gauss number field including E × E blown up at six points (E \cong C/Z[i]), the Kummer surface of the rational cuboid problem (3-dimensional extension of congruence number problem) and some interesting rational surfaces together with the corresponding congruence subgroups of U((2,1),Z[i]).
Files in this item
Thumbnail
1.pdf — Adobe PDF — 348.5 Kb
MD5: 28676a1d3cf8dff8de832943206b4735
Cite
BibTeX
EndNote
RIS
InCopyright
Details
DINI-Zertifikat 2019OpenAIRE validatedORCID Consortium
Imprint Policy Contact Data Privacy Statement
A service of University Library and Computer and Media Service
© Humboldt-Universität zu Berlin
 
DOI
10.18452/2646
Permanent URL
https://doi.org/10.18452/2646
HTML
<a href="https://doi.org/10.18452/2646">https://doi.org/10.18452/2646</a>