Logo of Humboldt-Universität zu BerlinLogo of Humboldt-Universität zu Berlin
edoc-Server
Open-Access-Publikationsserver der Humboldt-Universität
de|en
Header image: facade of Humboldt-Universität zu Berlin
View Item 
  • edoc-Server Home
  • Schriftenreihen und Sammelbände
  • Fakultäten und Institute der HU
  • Institut für Mathematik
  • Preprints aus dem Institut für Mathematik
  • View Item
  • edoc-Server Home
  • Schriftenreihen und Sammelbände
  • Fakultäten und Institute der HU
  • Institut für Mathematik
  • Preprints aus dem Institut für Mathematik
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.
All of edoc-ServerCommunity & CollectionTitleAuthorSubjectThis CollectionTitleAuthorSubject
PublishLoginRegisterHelp
StatisticsView Usage Statistics
All of edoc-ServerCommunity & CollectionTitleAuthorSubjectThis CollectionTitleAuthorSubject
PublishLoginRegisterHelp
StatisticsView Usage Statistics
View Item 
  • edoc-Server Home
  • Schriftenreihen und Sammelbände
  • Fakultäten und Institute der HU
  • Institut für Mathematik
  • Preprints aus dem Institut für Mathematik
  • View Item
  • edoc-Server Home
  • Schriftenreihen und Sammelbände
  • Fakultäten und Institute der HU
  • Institut für Mathematik
  • Preprints aus dem Institut für Mathematik
  • View Item
2005-11-07Buch DOI: 10.18452/2661
Quantitative stability in stochastic programming: The method of probability metrics
Rachev, Svetlozar T.
Römisch, Werner
Quantitative stability of optimal values and solution sets to stochastic programming problems is studied when the underlying probability distribution varies in some metric space of probability measures. We give conditions that imply that a stochastic program behaves stable with respect to a minimal information (m.i.) probability metric that is naturally associated with the data of the program. Canonical metrics bounding the m.i. metric are derived for specific models, namely for linear two-stage, mixed-integer two-stage and chance constrained models. The corresponding quantitative stability results as well as some consequences for asymptotic properties of empirical approximations extend earlier results in this direction. In particular, rates of convergence in probability are derived under metric entropy conditions. Finally, we study stability properties of stable investment portfolios having minimal risk with respect to the spectral measure and stability index of the underlying stable probability distribution.
Files in this item
Thumbnail
22.pdf — Adobe PDF — 392.9 Kb
MD5: 3a53271e27c7569629771f275bd86663
Cite
BibTeX
EndNote
RIS
InCopyright
Details
DINI-Zertifikat 2019OpenAIRE validatedORCID Consortium
Imprint Policy Contact Data Privacy Statement
A service of University Library and Computer and Media Service
© Humboldt-Universität zu Berlin
 
DOI
10.18452/2661
Permanent URL
https://doi.org/10.18452/2661
HTML
<a href="https://doi.org/10.18452/2661">https://doi.org/10.18452/2661</a>