Logo of Humboldt-Universität zu BerlinLogo of Humboldt-Universität zu Berlin
edoc-Server
Open-Access-Publikationsserver der Humboldt-Universität
de|en
Header image: facade of Humboldt-Universität zu Berlin
View Item 
  • edoc-Server Home
  • Schriftenreihen und Sammelbände
  • Fakultäten und Institute der HU
  • Institut für Mathematik
  • Preprints aus dem Institut für Mathematik
  • View Item
  • edoc-Server Home
  • Schriftenreihen und Sammelbände
  • Fakultäten und Institute der HU
  • Institut für Mathematik
  • Preprints aus dem Institut für Mathematik
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.
All of edoc-ServerCommunity & CollectionTitleAuthorSubjectThis CollectionTitleAuthorSubject
PublishLoginRegisterHelp
StatisticsView Usage Statistics
All of edoc-ServerCommunity & CollectionTitleAuthorSubjectThis CollectionTitleAuthorSubject
PublishLoginRegisterHelp
StatisticsView Usage Statistics
View Item 
  • edoc-Server Home
  • Schriftenreihen und Sammelbände
  • Fakultäten und Institute der HU
  • Institut für Mathematik
  • Preprints aus dem Institut für Mathematik
  • View Item
  • edoc-Server Home
  • Schriftenreihen und Sammelbände
  • Fakultäten und Institute der HU
  • Institut für Mathematik
  • Preprints aus dem Institut für Mathematik
  • View Item
1998-02-12Buch DOI: 10.18452/2671
New embaddings for nonlinear multiobjective optimization problems I
Guddat, Jürgen
Vazquez, Francisco Guerra
Nowack, Dieter
In a dialogue procedure the decision maker has to determine in each step the aspiration and reservation level expressing his wishes (goals). This leads to an optimization problem wich is not easy to solve in the nonconvex case (the known starting point is not feasible). We propose a modified standard embedding (one parametric optimization). This problem will be discussed from the point of view of parametric optimization (non-degenerate critical points, singularities, pathfollowing methods to describe numericalley a connected component in the set of stationary points and in the set of generalized critical points, respectively, and jumps (descent methods) to other connected components in these sets). This embedding is much better for computing a goal realizer or replying that the goal was not realistic than the embeddings considered in the literature before, but in the worst case we have to find all connected components and this is an open problem.
Files in this item
Thumbnail
2.pdf — Adobe PDF — 651.8 Kb
MD5: 1efcf2e154554d05ef98e2a862d1c471
Cite
BibTeX
EndNote
RIS
InCopyright
Details
DINI-Zertifikat 2019OpenAIRE validatedORCID Consortium
Imprint Policy Contact Data Privacy Statement
A service of University Library and Computer and Media Service
© Humboldt-Universität zu Berlin
 
DOI
10.18452/2671
Permanent URL
https://doi.org/10.18452/2671
HTML
<a href="https://doi.org/10.18452/2671">https://doi.org/10.18452/2671</a>