Asymptotic behaviour of solutions of semilinear hyperbolic systems in arbitrary domains
dc.contributor.author | Jochmann, Frank | |
dc.date.accessioned | 2017-06-15T17:59:36Z | |
dc.date.available | 2017-06-15T17:59:36Z | |
dc.date.created | 2005-11-15 | |
dc.date.issued | 2005-11-15 | |
dc.identifier.issn | 0863-0976 | |
dc.identifier.uri | http://edoc.hu-berlin.de/18452/3343 | |
dc.description.abstract | In this paper the long time asymptotic behaviour of solutions to semilnear first order hyperbolic systems including Maxwell's equations and the scalar wave-equation in an arbitrary spatial domain is investigated. Weak conergence to stationary states is proved. The possibly nonlinear damping-term may vanish on some subdomain and obeys on the other part of the domain a coerciveness condition, but it is not necessarily monotone. In the case that it is monotone also strong $L^q$-convergence is shown. | eng |
dc.language.iso | eng | |
dc.publisher | Humboldt-Universität zu Berlin, Mathematisch-Naturwissenschaftliche Fakultät II, Institut für Mathematik | |
dc.rights.uri | http://rightsstatements.org/vocab/InC/1.0/ | |
dc.subject | Equations of electromagnetic theory and optics | eng |
dc.subject | Asymptotic behavior of solutions | eng |
dc.subject | Wave equation | eng |
dc.subject | General theory of hyperbolic systems of first-order PDE | eng |
dc.subject.ddc | 510 Mathematik | |
dc.title | Asymptotic behaviour of solutions of semilinear hyperbolic systems in arbitrary domains | |
dc.type | book | |
dc.identifier.urn | urn:nbn:de:kobv:11-10053658 | |
dc.identifier.doi | http://dx.doi.org/10.18452/2691 | |
local.edoc.pages | 23 | |
local.edoc.type-name | Buch | |
local.edoc.container-type | series | |
local.edoc.container-type-name | Schriftenreihe | |
local.edoc.container-year | 1998 | |
dc.identifier.zdb | 2075199-0 | |
bua.series.name | Preprints aus dem Institut für Mathematik | |
bua.series.issuenumber | 1998,25 |