Show simple item record

2005-11-15Buch DOI: 10.18452/2691
Asymptotic behaviour of solutions of semilinear hyperbolic systems in arbitrary domains
dc.contributor.authorJochmann, Frank
dc.date.accessioned2017-06-15T17:59:36Z
dc.date.available2017-06-15T17:59:36Z
dc.date.created2005-11-15
dc.date.issued2005-11-15
dc.identifier.issn0863-0976
dc.identifier.urihttp://edoc.hu-berlin.de/18452/3343
dc.description.abstractIn this paper the long time asymptotic behaviour of solutions to semilnear first order hyperbolic systems including Maxwell's equations and the scalar wave-equation in an arbitrary spatial domain is investigated. Weak conergence to stationary states is proved. The possibly nonlinear damping-term may vanish on some subdomain and obeys on the other part of the domain a coerciveness condition, but it is not necessarily monotone. In the case that it is monotone also strong $L^q$-convergence is shown.eng
dc.language.isoeng
dc.publisherHumboldt-Universität zu Berlin, Mathematisch-Naturwissenschaftliche Fakultät II, Institut für Mathematik
dc.rights.urihttp://rightsstatements.org/vocab/InC/1.0/
dc.subjectEquations of electromagnetic theory and opticseng
dc.subjectAsymptotic behavior of solutionseng
dc.subjectWave equationeng
dc.subjectGeneral theory of hyperbolic systems of first-order PDEeng
dc.subject.ddc510 Mathematik
dc.titleAsymptotic behaviour of solutions of semilinear hyperbolic systems in arbitrary domains
dc.typebook
dc.identifier.urnurn:nbn:de:kobv:11-10053658
dc.identifier.doihttp://dx.doi.org/10.18452/2691
local.edoc.pages23
local.edoc.type-nameBuch
local.edoc.container-typeseries
local.edoc.container-type-nameSchriftenreihe
local.edoc.container-year1998
dc.identifier.zdb2075199-0
bua.series.namePreprints aus dem Institut für Mathematik
bua.series.issuenumber1998,25

Show simple item record