Show simple item record

1999-08-02Buch DOI: 10.18452/2696
A Non-linear Parabolic System Modeling Chemotaxis with Sensitivity Functions
dc.contributor.authorPost, Katharina
dc.date.accessioned2017-06-15T18:00:32Z
dc.date.available2017-06-15T18:00:32Z
dc.date.created2005-11-16
dc.date.issued1999-08-02
dc.identifier.issn0863-0976
dc.identifier.urihttp://edoc.hu-berlin.de/18452/3348
dc.description.abstractWe study a model for chemotaxis on a general Lipschitz domain where the chemotactic response is specified by sensitivity functions. After finding a Lyapunov function for the system, we demonstrate existence of global solutions for different classes of sensitivity functions and show convergence to possibly non-trivial steady states.eng
dc.language.isoeng
dc.publisherHumboldt-Universität zu Berlin, Mathematisch-Naturwissenschaftliche Fakultät II, Institut für Mathematik
dc.rights.urihttp://rightsstatements.org/vocab/InC/1.0/
dc.subjectasymptotic behavioureng
dc.subjectreaction-diffusion equationseng
dc.subjecta-priori-estimateseng
dc.subjectLyapunov functioneng
dc.subjectchemotaxiseng
dc.subject.ddc510 Mathematik
dc.titleA Non-linear Parabolic System Modeling Chemotaxis with Sensitivity Functions
dc.typebook
dc.identifier.urnurn:nbn:de:kobv:11-10053707
dc.identifier.doihttp://dx.doi.org/10.18452/2696
local.edoc.pages36
local.edoc.type-nameBuch
local.edoc.container-typeseries
local.edoc.container-type-nameSchriftenreihe
local.edoc.container-year1999
dc.identifier.zdb2075199-0
bua.series.namePreprints aus dem Institut für Mathematik
bua.series.issuenumber1999,12

Show simple item record