Logo of Humboldt-Universität zu BerlinLogo of Humboldt-Universität zu Berlin
edoc-Server
Open-Access-Publikationsserver der Humboldt-Universität
de|en
Header image: facade of Humboldt-Universität zu Berlin
View Item 
  • edoc-Server Home
  • Schriftenreihen und Sammelbände
  • Fakultäten und Institute der HU
  • Institut für Mathematik
  • Preprints aus dem Institut für Mathematik
  • View Item
  • edoc-Server Home
  • Schriftenreihen und Sammelbände
  • Fakultäten und Institute der HU
  • Institut für Mathematik
  • Preprints aus dem Institut für Mathematik
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.
All of edoc-ServerCommunity & CollectionTitleAuthorSubjectThis CollectionTitleAuthorSubject
PublishLoginRegisterHelp
StatisticsView Usage Statistics
All of edoc-ServerCommunity & CollectionTitleAuthorSubjectThis CollectionTitleAuthorSubject
PublishLoginRegisterHelp
StatisticsView Usage Statistics
View Item 
  • edoc-Server Home
  • Schriftenreihen und Sammelbände
  • Fakultäten und Institute der HU
  • Institut für Mathematik
  • Preprints aus dem Institut für Mathematik
  • View Item
  • edoc-Server Home
  • Schriftenreihen und Sammelbände
  • Fakultäten und Institute der HU
  • Institut für Mathematik
  • Preprints aus dem Institut für Mathematik
  • View Item
2000-01-06Buch DOI: 10.18452/2699
Equations for Polar Varieties and Efficient Real Elimination
Bank, Bernd
Giusti, Marc
Heintz, Joos
Mbakop, G. M.
Let $V_0$ be a smooth and compact real variety given by a reduced regular sequence of polynomials $f_1,..., f_p$. This paper is devoted to the algorithmic problem of finding efficiently for each connected component of $V_0$ a representative point. For this purpose we exhibit explicit polynomial equations which describe for generic variables the polar varieties of $V_0$ of all dimensions. This leads to a procedure which solves our algorithmic problem in time that is polynomial in the (extrinsic) description length of the input equations $f_1,...,f_p$ and in a suitably introduced geometric (extrinsic) parameter, called the degree of the real interpretation of the given equation system $f_1,...,f_p$.
Files in this item
Thumbnail
15.pdf — Adobe PDF — 371.2 Kb
MD5: 790324c4ce058b482a28f4d811028158
Cite
BibTeX
EndNote
RIS
InCopyright
Details
DINI-Zertifikat 2019OpenAIRE validatedORCID Consortium
Imprint Policy Contact Data Privacy Statement
A service of University Library and Computer and Media Service
© Humboldt-Universität zu Berlin
 
DOI
10.18452/2699
Permanent URL
https://doi.org/10.18452/2699
HTML
<a href="https://doi.org/10.18452/2699">https://doi.org/10.18452/2699</a>