Logo of Humboldt-Universität zu BerlinLogo of Humboldt-Universität zu Berlin
edoc-Server
Open-Access-Publikationsserver der Humboldt-Universität
de|en
Header image: facade of Humboldt-Universität zu Berlin
View Item 
  • edoc-Server Home
  • Schriftenreihen und Sammelbände
  • Fakultäten und Institute der HU
  • Institut für Mathematik
  • Preprints aus dem Institut für Mathematik
  • View Item
  • edoc-Server Home
  • Schriftenreihen und Sammelbände
  • Fakultäten und Institute der HU
  • Institut für Mathematik
  • Preprints aus dem Institut für Mathematik
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.
All of edoc-ServerCommunity & CollectionTitleAuthorSubjectThis CollectionTitleAuthorSubject
PublishLoginRegisterHelp
StatisticsView Usage Statistics
All of edoc-ServerCommunity & CollectionTitleAuthorSubjectThis CollectionTitleAuthorSubject
PublishLoginRegisterHelp
StatisticsView Usage Statistics
View Item 
  • edoc-Server Home
  • Schriftenreihen und Sammelbände
  • Fakultäten und Institute der HU
  • Institut für Mathematik
  • Preprints aus dem Institut für Mathematik
  • View Item
  • edoc-Server Home
  • Schriftenreihen und Sammelbände
  • Fakultäten und Institute der HU
  • Institut für Mathematik
  • Preprints aus dem Institut für Mathematik
  • View Item
2005-11-16Buch DOI: 10.18452/2702
Locally Exact Lower Bounds and Optimality Cuts for All-Quadratic Programs with Convex Constraints
Nowak, Ivo
A central problem of branch-and-bound methods for global optimization is that lower bounds are often not exact even if the diameter of the subdivided regions shrinks to zero. This can lead to a large number of subdivisions preventing the method from terminating in reasonable time. For the all-quadratic optimization problem with convex constraints we present locally exact lower bounds and optimality cuts based on Lagrangian relaxation. If all global minimizers fulfill a certain second order optimality condition it can be shown that locally exact lower bounds or optimality cuts lead to finite termination of a branch-and-bound algorithm. Since there exist efficient methods for computing Lagrangian relaxation bounds of all-quadratic optimization problems exploiting problem structure our approach should be applicable to large scale structured optimization problems.
Files in this item
Thumbnail
18.pdf — Adobe PDF — 260.5 Kb
MD5: caf0ce5a53d3983a50029354fe0c5d15
Cite
BibTeX
EndNote
RIS
InCopyright
Details
DINI-Zertifikat 2019OpenAIRE validatedORCID Consortium
Imprint Policy Contact Data Privacy Statement
A service of University Library and Computer and Media Service
© Humboldt-Universität zu Berlin
 
DOI
10.18452/2702
Permanent URL
https://doi.org/10.18452/2702
HTML
<a href="https://doi.org/10.18452/2702">https://doi.org/10.18452/2702</a>