Heights on elliptic curves and the diophantine equation x4 + y4 = cz4
dc.contributor.author | Grigorov, Grigor | |
dc.contributor.author | Rizov, Jordan | |
dc.date.accessioned | 2017-06-15T18:05:49Z | |
dc.date.available | 2017-06-15T18:05:49Z | |
dc.date.created | 2005-11-18 | |
dc.date.issued | 1998-01-10 | |
dc.identifier.issn | 0863-0976 | |
dc.identifier.uri | http://edoc.hu-berlin.de/18452/3376 | |
dc.description.abstract | In this paper we give sharp explicit estimates for the difference of the Weil height and the Néron - Tate height on the elliptic curve $v^2 = u^3 - cu$. We then apply this in the proof of the fact that if c > 2 is a fourth power free integer and the rank of $v^2 = u^3 - cu$ is 1 then the equation $x^4 + y^4 = cz^4$ has no nonzero solutions in integers | eng |
dc.language.iso | eng | |
dc.publisher | Humboldt-Universität zu Berlin, Mathematisch-Naturwissenschaftliche Fakultät II, Institut für Mathematik | |
dc.rights.uri | http://rightsstatements.org/vocab/InC/1.0/ | |
dc.subject | elliptic curves | eng |
dc.subject | canonical height | eng |
dc.subject | diophantine equation | eng |
dc.subject.ddc | 510 Mathematik | |
dc.title | Heights on elliptic curves and the diophantine equation x4 + y4 = cz4 | |
dc.type | book | |
dc.identifier.urn | urn:nbn:de:kobv:11-10053981 | |
dc.identifier.doi | http://dx.doi.org/10.18452/2724 | |
local.edoc.container-title | Preprints aus dem Institut für Mathematik | |
local.edoc.pages | 9 | |
local.edoc.type-name | Buch | |
local.edoc.container-type | series | |
local.edoc.container-type-name | Schriftenreihe | |
local.edoc.container-volume | 1998 | |
local.edoc.container-issue | 4 | |
local.edoc.container-year | 1998 | |
local.edoc.container-erstkatid | 2075199-0 |