Show simple item record

1998-01-10Buch DOI: 10.18452/2724
Heights on elliptic curves and the diophantine equation x4 + y4 = cz4
dc.contributor.authorGrigorov, Grigor
dc.contributor.authorRizov, Jordan
dc.date.accessioned2017-06-15T18:05:49Z
dc.date.available2017-06-15T18:05:49Z
dc.date.created2005-11-18
dc.date.issued1998-01-10
dc.identifier.issn0863-0976
dc.identifier.urihttp://edoc.hu-berlin.de/18452/3376
dc.description.abstractIn this paper we give sharp explicit estimates for the difference of the Weil height and the Néron - Tate height on the elliptic curve $v^2 = u^3 - cu$. We then apply this in the proof of the fact that if c > 2 is a fourth power free integer and the rank of $v^2 = u^3 - cu$ is 1 then the equation $x^4 + y^4 = cz^4$ has no nonzero solutions in integerseng
dc.language.isoeng
dc.publisherHumboldt-Universität zu Berlin, Mathematisch-Naturwissenschaftliche Fakultät II, Institut für Mathematik
dc.rights.urihttp://rightsstatements.org/vocab/InC/1.0/
dc.subjectelliptic curveseng
dc.subjectcanonical heighteng
dc.subjectdiophantine equationeng
dc.subject.ddc510 Mathematik
dc.titleHeights on elliptic curves and the diophantine equation x4 + y4 = cz4
dc.typebook
dc.identifier.urnurn:nbn:de:kobv:11-10053981
dc.identifier.doihttp://dx.doi.org/10.18452/2724
local.edoc.container-titlePreprints aus dem Institut für Mathematik
local.edoc.pages9
local.edoc.type-nameBuch
local.edoc.container-typeseries
local.edoc.container-type-nameSchriftenreihe
local.edoc.container-volume1998
local.edoc.container-issue4
local.edoc.container-year1998
local.edoc.container-erstkatid2075199-0

Show simple item record