Logo der Humboldt-Universität zu BerlinLogo der Humboldt-Universität zu Berlin
edoc-Server
Open-Access-Publikationsserver der Humboldt-Universität
de|en
Banner: Fassade der Humboldt-Universität zu Berlin
Publikation anzeigen 
  • edoc-Server Startseite
  • Schriftenreihen und Sammelbände
  • Fakultäten und Institute der HU
  • Institut für Mathematik
  • Preprints aus dem Institut für Mathematik
  • Publikation anzeigen
  • edoc-Server Startseite
  • Schriftenreihen und Sammelbände
  • Fakultäten und Institute der HU
  • Institut für Mathematik
  • Preprints aus dem Institut für Mathematik
  • Publikation anzeigen
JavaScript is disabled for your browser. Some features of this site may not work without it.
Gesamter edoc-ServerBereiche & SammlungenTitelAutorSchlagwortDiese SammlungTitelAutorSchlagwort
PublizierenEinloggenRegistrierenHilfe
StatistikNutzungsstatistik
Gesamter edoc-ServerBereiche & SammlungenTitelAutorSchlagwortDiese SammlungTitelAutorSchlagwort
PublizierenEinloggenRegistrierenHilfe
StatistikNutzungsstatistik
Publikation anzeigen 
  • edoc-Server Startseite
  • Schriftenreihen und Sammelbände
  • Fakultäten und Institute der HU
  • Institut für Mathematik
  • Preprints aus dem Institut für Mathematik
  • Publikation anzeigen
  • edoc-Server Startseite
  • Schriftenreihen und Sammelbände
  • Fakultäten und Institute der HU
  • Institut für Mathematik
  • Preprints aus dem Institut für Mathematik
  • Publikation anzeigen
2006-08-02Buch DOI: 10.18452/2730
Mean-square convergence of stochastic multi-step methods with variable step-size
Sickenberger, Thorsten
We study mean-square consistency, stability in the mean-square sense and mean-square convergence of drift-implicit linear multi-step methods with variable step-size for the approximation of the solution of Ito stochastic differential equations. We obtain conditions that depend on the step-size ratios and that ensure mean-square convergence for the special case of adaptive two-step Maruyama schemes. Further, in the case of small noise we develop a local error analysis with respect to the h-ε approach and we construct some stochastic linear multi-step methods with variable step-size that have order 2 behavior if the noise is small enough.
Dateien zu dieser Publikation
Thumbnail
20.pdf — PDF — 235.7 Kb
MD5: 92ef618ba639c85e6cfa0825339e2295
Referenzen
Is Part Of Series: Preprints aus dem Institut für Mathematik - 20, Mathematik-Preprints, ISSN:0863-0976
Zitieren
BibTeX
EndNote
RIS
Keine Lizenzangabe
Zur Langanzeige
Impressum Leitlinien Kontakt Datenschutzerklärung
Ein Service der Universitätsbibliothek und des Computer- und Medienservice
© Humboldt-Universität zu Berlin
 
DOI
10.18452/2730
Permanent URL
https://doi.org/10.18452/2730
HTML
<a href="https://doi.org/10.18452/2730">https://doi.org/10.18452/2730</a>