Logo of Humboldt-Universität zu BerlinLogo of Humboldt-Universität zu Berlin
edoc-Server
Open-Access-Publikationsserver der Humboldt-Universität
de|en
Header image: facade of Humboldt-Universität zu Berlin
View Item 
  • edoc-Server Home
  • Schriftenreihen und Sammelbände
  • Fakultäten und Institute der HU
  • Institut für Mathematik
  • Preprints aus dem Institut für Mathematik
  • View Item
  • edoc-Server Home
  • Schriftenreihen und Sammelbände
  • Fakultäten und Institute der HU
  • Institut für Mathematik
  • Preprints aus dem Institut für Mathematik
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.
All of edoc-ServerCommunity & CollectionTitleAuthorSubjectThis CollectionTitleAuthorSubject
PublishLoginRegisterHelp
StatisticsView Usage Statistics
All of edoc-ServerCommunity & CollectionTitleAuthorSubjectThis CollectionTitleAuthorSubject
PublishLoginRegisterHelp
StatisticsView Usage Statistics
View Item 
  • edoc-Server Home
  • Schriftenreihen und Sammelbände
  • Fakultäten und Institute der HU
  • Institut für Mathematik
  • Preprints aus dem Institut für Mathematik
  • View Item
  • edoc-Server Home
  • Schriftenreihen und Sammelbände
  • Fakultäten und Institute der HU
  • Institut für Mathematik
  • Preprints aus dem Institut für Mathematik
  • View Item
2006-01-01Buch DOI: 10.18452/2739
Iterative Operator-Splitting Methods with higher order Time-Integration Methods and Applications for Parabolic Partial Differential Equations
Geiser, Jürgen
Gedicke, Joscha
In this paper we design higher order time integrators for systems of stiff ordinary differential equations. We could combine implicit Runge-Kutta- and BDF-methods with iterative operator-splitting methods to obtain higher order methods. The motivation of decoupling each complicate operator in simpler operators with an adapted time-scale allow us to solve more efficiently our problems. We compare our new methods with the higher order Fractional-Stepping Runge-Kutta methods, developed for stiff ordinary differential equations. The benefit will be the individual handling of each operators with adapted standard higher order time-integrators. The methods are applied to convection-diffusion-reaction equations and we could obtain higher order results. Finally we discuss the iterative operator-splitting methods for the applications to multi-physical problems.
Files in this item
Thumbnail
10.pdf — Adobe PDF — 137.0 Kb
MD5: 8e850bed55e497d8154dc2f8383288a7
Cite
BibTeX
EndNote
RIS
InCopyright
Details

Related Items

Show related Items with similar Title, Author, Creator or Subject.

  • 2011-09-27Buch
    Splitting Method of Convection-Diffusion Methods with Disentanglement methods 
    Disentanglement Methods
    Geiser, Jürgen; Elbiomy, Mahmoud
    In this paper, we discuss higher-order operator-splitting methods done by disentanglement methods. The idea is based on computing best fitted exponents to an exponential splitting scheme with more than two operators. We ...
  • 1995-01-01Zeitschriftenartikel
    A Method for the Simultaneous Determination of Creatinine and Uric Acid in Serum by High-Performance-Liquid-Chromatography Evaluated Versus Reference Methods 
    Kock, R.; Seitz, S.; Delvoux, B.; Greiling, H.
  • 1990-01-01Zeitschriftenartikel
    Comparison of Five Routine Methods with the Candidate Reference Method for the Determination of Bilirubin in Neonatal Serum 
    Schlebusch, H.; Axer, K.; Schneider, Ch.; Liappis, N.; Röhle, G.
DINI-Zertifikat 2019OpenAIRE validatedORCID Consortium
Imprint Policy Contact Data Privacy Statement
A service of University Library and Computer and Media Service
© Humboldt-Universität zu Berlin
 
DOI
10.18452/2739
Permanent URL
https://doi.org/10.18452/2739
HTML
<a href="https://doi.org/10.18452/2739">https://doi.org/10.18452/2739</a>