Logo of Humboldt-Universität zu BerlinLogo of Humboldt-Universität zu Berlin
edoc-Server
Open-Access-Publikationsserver der Humboldt-Universität
de|en
Header image: facade of Humboldt-Universität zu Berlin
View Item 
  • edoc-Server Home
  • Schriftenreihen und Sammelbände
  • Fakultäten und Institute der HU
  • Institut für Mathematik
  • Preprints aus dem Institut für Mathematik
  • View Item
  • edoc-Server Home
  • Schriftenreihen und Sammelbände
  • Fakultäten und Institute der HU
  • Institut für Mathematik
  • Preprints aus dem Institut für Mathematik
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.
All of edoc-ServerCommunity & CollectionTitleAuthorSubjectThis CollectionTitleAuthorSubject
PublishLoginRegisterHelp
StatisticsView Usage Statistics
All of edoc-ServerCommunity & CollectionTitleAuthorSubjectThis CollectionTitleAuthorSubject
PublishLoginRegisterHelp
StatisticsView Usage Statistics
View Item 
  • edoc-Server Home
  • Schriftenreihen und Sammelbände
  • Fakultäten und Institute der HU
  • Institut für Mathematik
  • Preprints aus dem Institut für Mathematik
  • View Item
  • edoc-Server Home
  • Schriftenreihen und Sammelbände
  • Fakultäten und Institute der HU
  • Institut für Mathematik
  • Preprints aus dem Institut für Mathematik
  • View Item
2009-07-02Buch DOI: 10.18452/2759
Statistical inference for discrete-time samples from affine stochastic delay differential equations
Küchler, Uwe
Sørensen, Michael
Statistical inference for discrete time observations of an affine stochastic delay differential equation is considered. The main focus is on maximum pseudo-likelihood estimators, which are easy to calculate in practice. Also a more general class of prediction-based estimating functions is investigated. In particular, the optimal prediction-based estimating function and the asymptotic properties of the estimators are derived. The maximum pseudo-likelihood estimator is a particular case, and an expression is found for the efficiency loss when using the maximum pseudo-likelihood estimator rather than the computationally more involved optimal prediction-based estimator. The distribution of the pseudo-likelihood estimator is investigated in a simulation study. For models where the delay measure is concentrated on a finite set, an estimator obtained by discretization of the continuous-time likelihood function is presented, and its asymptotic properties are investigated. The estimator is very easy to calculate, but it is shown to have a significant bias when the sampling frequency is low. Two examples of affine stochastic delay equation are considered in detail.
Files in this item
Thumbnail
1.pdf — Adobe PDF — 221.6 Kb
MD5: a70874dd460071577ed1813bf937769c
Cite
BibTeX
EndNote
RIS
InCopyright
Details
DINI-Zertifikat 2019OpenAIRE validatedORCID Consortium
Imprint Policy Contact Data Privacy Statement
A service of University Library and Computer and Media Service
© Humboldt-Universität zu Berlin
 
DOI
10.18452/2759
Permanent URL
https://doi.org/10.18452/2759
HTML
<a href="https://doi.org/10.18452/2759">https://doi.org/10.18452/2759</a>