Show simple item record

2009-07-02Buch DOI: 10.18452/2762
Existence of turbulent weak solutions to the generalized Navier-Stokes equations in exterior domains and large time behaviour
dc.contributor.authorWolf, Jörg
dc.date.accessioned2017-06-15T18:13:13Z
dc.date.available2017-06-15T18:13:13Z
dc.date.created2009-07-02
dc.date.issued2009-07-02
dc.identifier.issn0863-0976
dc.identifier.urihttp://edoc.hu-berlin.de/18452/3414
dc.description.abstractLet $\Omega$ be an exterior domain in $\R^n\,(n=2,3,4)$ , with boundary being not necessarily smooth. For any initial velocity ${\bf u}_0\in L^2(\Omega)^n$ such that $\nabla\cdot {\bf u}_0=0$ (in sense of distribution) and external forces \[ \bfF\in L^1(0,\infty; L^2(\Omega )^n)+ L^2(0,\infty; W^{-1,2} (\Omega )^n) \] we are able to construct a turbulent weak solution ${\bf u}\in C_w([0,\infty); L^2(\Omega)^n)\cap L^2(0,\infty; W^{1, 2}_0(\Omega )^n)$ to the equations of motion of a non-Newtonian fluid. Simultaneously, we prove that this solution fulfils the non-uniform decay condition \[ \|\bfu(t)\|_{L^2(\Omega)} \rightarrow 0 \quad \mbox{as}\quad t \rightarrow \infty. \]eng
dc.language.isoeng
dc.publisherHumboldt-Universität zu Berlin, Mathematisch-Naturwissenschaftliche Fakultät II, Institut für Mathematik
dc.subjectGeneral fluidseng
dc.subjectexistence of weak solutionseng
dc.subjectasymptotic behavioureng
dc.subject.ddc510 Mathematik
dc.titleExistence of turbulent weak solutions to the generalized Navier-Stokes equations in exterior domains and large time behaviour
dc.typebook
dc.identifier.urnurn:nbn:de:kobv:11-110-18452/3414-9
dc.identifier.doihttp://dx.doi.org/10.18452/2762
local.edoc.container-titlePreprints aus dem Institut für Mathematik
local.edoc.pages35
local.edoc.type-nameBuch
local.edoc.container-typeseries
local.edoc.container-type-nameSchriftenreihe
local.edoc.container-volume2007
local.edoc.container-issue4
local.edoc.container-year2007
local.edoc.container-erstkatid2075199-0

Show simple item record