Logo of Humboldt-Universität zu BerlinLogo of Humboldt-Universität zu Berlin
edoc-Server
Open-Access-Publikationsserver der Humboldt-Universität
de|en
Header image: facade of Humboldt-Universität zu Berlin
View Item 
  • edoc-Server Home
  • Schriftenreihen und Sammelbände
  • Fakultäten und Institute der HU
  • Institut für Mathematik
  • Preprints aus dem Institut für Mathematik
  • View Item
  • edoc-Server Home
  • Schriftenreihen und Sammelbände
  • Fakultäten und Institute der HU
  • Institut für Mathematik
  • Preprints aus dem Institut für Mathematik
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.
All of edoc-ServerCommunity & CollectionTitleAuthorSubjectThis CollectionTitleAuthorSubject
PublishLoginRegisterHelp
StatisticsView Usage Statistics
All of edoc-ServerCommunity & CollectionTitleAuthorSubjectThis CollectionTitleAuthorSubject
PublishLoginRegisterHelp
StatisticsView Usage Statistics
View Item 
  • edoc-Server Home
  • Schriftenreihen und Sammelbände
  • Fakultäten und Institute der HU
  • Institut für Mathematik
  • Preprints aus dem Institut für Mathematik
  • View Item
  • edoc-Server Home
  • Schriftenreihen und Sammelbände
  • Fakultäten und Institute der HU
  • Institut für Mathematik
  • Preprints aus dem Institut für Mathematik
  • View Item
2011-08-11Buch DOI: 10.18452/2776
Modeling for Chemical Vapor Deposition
Geiser, Jürgen
In this paper we present the modeling and simulation of a chemical vapor deposition for metallic bipolar plates. In the models we discuss the application of different ideas to simulate the transport of chemical reactants in the gas chamber. Based on the multi-scaling problem of the underlying physical behavior, we discuss adapted models in different domains and scales. We combine analytically motivated solutions on simplified domains with numerical solutions based on more complex domains. The near-and-far-field context is based on the large scale, that can be done with continuous models, as convection-diffusion-reaction equations, and small scales, that are based on chemical and molecular models as Boltzmann equations. As an expert system of different models, we deal with different problems. Numerical methods are described in the context of time- and space-discretization methods. For the simulations we apply analytical as well as numercial methods to obtain results to predict the growth of thin layers. The results are discussed with physical experiments to give a valid model for the assumed growth.
Files in this item
Thumbnail
19.pdf — Adobe PDF — 3.774 Mb
MD5: 3200e412509f424ee16dc61182e875e9
Cite
BibTeX
EndNote
RIS
InCopyright
Details
DINI-Zertifikat 2019OpenAIRE validatedORCID Consortium
Imprint Policy Contact Data Privacy Statement
A service of University Library and Computer and Media Service
© Humboldt-Universität zu Berlin
 
DOI
10.18452/2776
Permanent URL
https://doi.org/10.18452/2776
HTML
<a href="https://doi.org/10.18452/2776">https://doi.org/10.18452/2776</a>