Logo of Humboldt-Universität zu BerlinLogo of Humboldt-Universität zu Berlin
edoc-Server
Open-Access-Publikationsserver der Humboldt-Universität
de|en
Header image: facade of Humboldt-Universität zu Berlin
View Item 
  • edoc-Server Home
  • Schriftenreihen und Sammelbände
  • Fakultäten und Institute der HU
  • Institut für Mathematik
  • Preprints aus dem Institut für Mathematik
  • View Item
  • edoc-Server Home
  • Schriftenreihen und Sammelbände
  • Fakultäten und Institute der HU
  • Institut für Mathematik
  • Preprints aus dem Institut für Mathematik
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.
All of edoc-ServerCommunity & CollectionTitleAuthorSubjectThis CollectionTitleAuthorSubject
PublishLoginRegisterHelp
StatisticsView Usage Statistics
All of edoc-ServerCommunity & CollectionTitleAuthorSubjectThis CollectionTitleAuthorSubject
PublishLoginRegisterHelp
StatisticsView Usage Statistics
View Item 
  • edoc-Server Home
  • Schriftenreihen und Sammelbände
  • Fakultäten und Institute der HU
  • Institut für Mathematik
  • Preprints aus dem Institut für Mathematik
  • View Item
  • edoc-Server Home
  • Schriftenreihen und Sammelbände
  • Fakultäten und Institute der HU
  • Institut für Mathematik
  • Preprints aus dem Institut für Mathematik
  • View Item
2011-08-11Buch DOI: 10.18452/2780
Modified Jacobian Newton Iterative Method with Embedded Domain Decomposition Method
Geiser, Jürgen
Kravvaritis, Christos
In this article a new approach is proposed for constructing a domain decomposition method based on the iterative operator-splitting method for nonlinear differential equations. The convergence properties of such a method are studied. The main feature of the proposed idea are the linearization of the nonlinear equations and the application of iterative splitting methods. We present iterative operator-splitting method with embedded Newton methods to solve the nonlinearity. We confirm with numerical applications the effectiveness of the proposed iterative operator-splitting method in comparison with the classical Newton methods. We provide improved results and convergence rates.
Files in this item
Thumbnail
23.pdf — Adobe PDF — 165.2 Kb
MD5: c6250fdc52ceb30840deae16442dc671
Cite
BibTeX
EndNote
RIS
InCopyright
Details
DINI-Zertifikat 2019OpenAIRE validatedORCID Consortium
Imprint Policy Contact Data Privacy Statement
A service of University Library and Computer and Media Service
© Humboldt-Universität zu Berlin
 
DOI
10.18452/2780
Permanent URL
https://doi.org/10.18452/2780
HTML
<a href="https://doi.org/10.18452/2780">https://doi.org/10.18452/2780</a>