Discontinuous Galerkin Finite Element Convergence for Incompressible Miscible Displacement Problems of Low Regularity
dc.contributor.author | Bartels, Sören | |
dc.contributor.author | Jensen, Max | |
dc.contributor.author | Müller, Rüdiger | |
dc.date.accessioned | 2017-06-15T18:17:09Z | |
dc.date.available | 2017-06-15T18:17:09Z | |
dc.date.created | 2011-08-11 | |
dc.date.issued | 2011-08-11 | |
dc.identifier.issn | 0863-0976 | |
dc.identifier.uri | http://edoc.hu-berlin.de/18452/3434 | |
dc.description.abstract | In this article we analyse the numerical approximation of incompressible miscible displacement problems with a combined mixed finite element and discontinuous Galerkin method under minimal regularity assumptions. The main result is that sequences of discrete solutions weakly accumulate at weak solutions of the continuous problem. In order to deal with the non-conformity of the method and to avoid overpenalisation of jumps across interelement boundaries, the careful construction of a reflexive subspace of the space of bounded variation, which compactly embeds into $L^2(\Omega)$, and of a lifting operator, which is compatible with the nonlinear diffusion coefficient, are required. An equivalent skew-symmetric formulation of the convection and reaction terms of the nonlinear partial differential equation allows to avoid flux limitation and nonetheless leads to an unconditionally stable and convergent numerical method. Numerical experiments underline the robustness of the proposed algorithm. | eng |
dc.language.iso | eng | |
dc.publisher | Humboldt-Universität zu Berlin, Mathematisch-Naturwissenschaftliche Fakultät II, Institut für Mathematik | |
dc.rights.uri | http://rightsstatements.org/vocab/InC/1.0/ | |
dc.subject.ddc | 510 Mathematik | |
dc.title | Discontinuous Galerkin Finite Element Convergence for Incompressible Miscible Displacement Problems of Low Regularity | |
dc.type | book | |
dc.identifier.urn | urn:nbn:de:kobv:11-100190697 | |
dc.identifier.doi | http://dx.doi.org/10.18452/2782 | |
local.edoc.pages | 20 | |
local.edoc.type-name | Buch | |
local.edoc.container-type | series | |
local.edoc.container-type-name | Schriftenreihe | |
local.edoc.container-year | 2008 | |
dc.identifier.zdb | 2075199-0 | |
bua.series.name | Preprints aus dem Institut für Mathematik | |
bua.series.issuenumber | 2008,2 |