Logo of Humboldt-Universität zu BerlinLogo of Humboldt-Universität zu Berlin
edoc-Server
Open-Access-Publikationsserver der Humboldt-Universität
de|en
Header image: facade of Humboldt-Universität zu Berlin
View Item 
  • edoc-Server Home
  • Schriftenreihen und Sammelbände
  • Fakultäten und Institute der HU
  • Institut für Mathematik
  • Preprints aus dem Institut für Mathematik
  • View Item
  • edoc-Server Home
  • Schriftenreihen und Sammelbände
  • Fakultäten und Institute der HU
  • Institut für Mathematik
  • Preprints aus dem Institut für Mathematik
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.
All of edoc-ServerCommunity & CollectionTitleAuthorSubjectThis CollectionTitleAuthorSubject
PublishLoginRegisterHelp
StatisticsView Usage Statistics
All of edoc-ServerCommunity & CollectionTitleAuthorSubjectThis CollectionTitleAuthorSubject
PublishLoginRegisterHelp
StatisticsView Usage Statistics
View Item 
  • edoc-Server Home
  • Schriftenreihen und Sammelbände
  • Fakultäten und Institute der HU
  • Institut für Mathematik
  • Preprints aus dem Institut für Mathematik
  • View Item
  • edoc-Server Home
  • Schriftenreihen und Sammelbände
  • Fakultäten und Institute der HU
  • Institut für Mathematik
  • Preprints aus dem Institut für Mathematik
  • View Item
2011-08-11Buch DOI: 10.18452/2789
Space adaptive Finite Element Methods for Dynamic Signorini Problems
Blum, Heribert
Rademacher, Andreas
Schröder, Andreas
Space adaptive techniques for dynamic Signorini problems are discussed. For discretisation, the Newmark method in time and low order finite elements in space are used. For the global discretisation error in space, an a posteriori error estimate is derived on the basis of the semi-discrete problem in mixed form. This approach relies on an auxiliary problem, which takes the form of a variational equation. An adaptive method based on the estimate is applied to improve the finite element approximation. Numerical results illustrate the performance of the presented method.
Files in this item
Thumbnail
9.pdf — Adobe PDF — 2.265 Mb
MD5: f2b6d334d80b2460c3ae1b29bb0f3ab7
Cite
BibTeX
EndNote
RIS
InCopyright
Details
DINI-Zertifikat 2019OpenAIRE validatedORCID Consortium
Imprint Policy Contact Data Privacy Statement
A service of University Library and Computer and Media Service
© Humboldt-Universität zu Berlin
 
DOI
10.18452/2789
Permanent URL
https://doi.org/10.18452/2789
HTML
<a href="https://doi.org/10.18452/2789">https://doi.org/10.18452/2789</a>