Logo of Humboldt-Universität zu BerlinLogo of Humboldt-Universität zu Berlin
edoc-Server
Open-Access-Publikationsserver der Humboldt-Universität
de|en
Header image: facade of Humboldt-Universität zu Berlin
View Item 
  • edoc-Server Home
  • Schriftenreihen und Sammelbände
  • Fakultäten und Institute der HU
  • Institut für Mathematik
  • Preprints aus dem Institut für Mathematik
  • View Item
  • edoc-Server Home
  • Schriftenreihen und Sammelbände
  • Fakultäten und Institute der HU
  • Institut für Mathematik
  • Preprints aus dem Institut für Mathematik
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.
All of edoc-ServerCommunity & CollectionTitleAuthorSubjectThis CollectionTitleAuthorSubject
PublishLoginRegisterHelp
StatisticsView Usage Statistics
All of edoc-ServerCommunity & CollectionTitleAuthorSubjectThis CollectionTitleAuthorSubject
PublishLoginRegisterHelp
StatisticsView Usage Statistics
View Item 
  • edoc-Server Home
  • Schriftenreihen und Sammelbände
  • Fakultäten und Institute der HU
  • Institut für Mathematik
  • Preprints aus dem Institut für Mathematik
  • View Item
  • edoc-Server Home
  • Schriftenreihen und Sammelbände
  • Fakultäten und Institute der HU
  • Institut für Mathematik
  • Preprints aus dem Institut für Mathematik
  • View Item
2011-08-11Buch DOI: 10.18452/2792
Macro- And Micor-Simulations For A Sublimation Growth Of Sic Single Crystals
Geiser, Jürgen
Irle, Stephan
The numerous technical applications in electronic and optoelectronic devices, such as lasers, diodes, and sensors demand high-quality silicon carbide (SiC) bulk single crystal for industrial applications. We consider a SiC crystal growth process by physical vapor transport (PVT), called modified Lely method. We deal with a model for the micro and macro-scale of the sublimation processes within the growth apparatus. The macroscopic model is based on the heat equation with heat sources due to induction heating and nonlocal interface conditions, representing the heat transfer by radiation. The microscopic model is based on the quantum chemical potential and is computed with molecular dynamics. We study of the temperature evolution in the apparatus and reflect the growth behavior of the microscopic model. We present results of some numerical simulations of the micro- and macro-model of our growth apparatus.
Files in this item
Thumbnail
15.pdf — Adobe PDF — 2.427 Mb
MD5: 18db95a451d6efbd5f4ef48a3c233bd7
Cite
BibTeX
EndNote
RIS
InCopyright
Details
DINI-Zertifikat 2019OpenAIRE validatedORCID Consortium
Imprint Policy Contact Data Privacy Statement
A service of University Library and Computer and Media Service
© Humboldt-Universität zu Berlin
 
DOI
10.18452/2792
Permanent URL
https://doi.org/10.18452/2792
HTML
<a href="https://doi.org/10.18452/2792">https://doi.org/10.18452/2792</a>