Logo of Humboldt-Universität zu BerlinLogo of Humboldt-Universität zu Berlin
edoc-Server
Open-Access-Publikationsserver der Humboldt-Universität
de|en
Header image: facade of Humboldt-Universität zu Berlin
View Item 
  • edoc-Server Home
  • Schriftenreihen und Sammelbände
  • Fakultäten und Institute der HU
  • Institut für Mathematik
  • Preprints aus dem Institut für Mathematik
  • View Item
  • edoc-Server Home
  • Schriftenreihen und Sammelbände
  • Fakultäten und Institute der HU
  • Institut für Mathematik
  • Preprints aus dem Institut für Mathematik
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.
All of edoc-ServerCommunity & CollectionTitleAuthorSubjectThis CollectionTitleAuthorSubject
PublishLoginRegisterHelp
StatisticsView Usage Statistics
All of edoc-ServerCommunity & CollectionTitleAuthorSubjectThis CollectionTitleAuthorSubject
PublishLoginRegisterHelp
StatisticsView Usage Statistics
View Item 
  • edoc-Server Home
  • Schriftenreihen und Sammelbände
  • Fakultäten und Institute der HU
  • Institut für Mathematik
  • Preprints aus dem Institut für Mathematik
  • View Item
  • edoc-Server Home
  • Schriftenreihen und Sammelbände
  • Fakultäten und Institute der HU
  • Institut für Mathematik
  • Preprints aus dem Institut für Mathematik
  • View Item
2011-09-20Buch DOI: 10.18452/2800
Error Control in h- and hp-adaptive FEM for Signorini's Problem
Schröder, Andreas
This paper presents a posteriori finite element error estimates for Signorini’s problem. The discretization is based on a mixed variational formulation proposed by Haslinger et al. which is extended to higher-order finite elements. The a posteriori error control relies on estimating the discretization error of an auxiliary problem which is given as a variational equation. The estimation consists of error bounds for the discretization error of the auxiliary problem and some further terms which capture the geometrical error and the error in the complementary condition. The derived estimates are applied to h- and hp-adaptive refinement and enrichment strategies. Numerical results confirm the applicability of the theoretical findings. In particular, optimal algebraic and almost exponential convergence rates are obtained.
Files in this item
Thumbnail
5.pdf — Adobe PDF — 849.7 Kb
MD5: 29efed38119cc410fa15b84c287fe80d
Cite
BibTeX
EndNote
RIS
InCopyright
Details
DINI-Zertifikat 2019OpenAIRE validatedORCID Consortium
Imprint Policy Contact Data Privacy Statement
A service of University Library and Computer and Media Service
© Humboldt-Universität zu Berlin
 
DOI
10.18452/2800
Permanent URL
https://doi.org/10.18452/2800
HTML
<a href="https://doi.org/10.18452/2800">https://doi.org/10.18452/2800</a>