Logo of Humboldt-Universität zu BerlinLogo of Humboldt-Universität zu Berlin
edoc-Server
Open-Access-Publikationsserver der Humboldt-Universität
de|en
Header image: facade of Humboldt-Universität zu Berlin
View Item 
  • edoc-Server Home
  • Schriftenreihen und Sammelbände
  • Fakultäten und Institute der HU
  • Institut für Mathematik
  • Preprints aus dem Institut für Mathematik
  • View Item
  • edoc-Server Home
  • Schriftenreihen und Sammelbände
  • Fakultäten und Institute der HU
  • Institut für Mathematik
  • Preprints aus dem Institut für Mathematik
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.
All of edoc-ServerCommunity & CollectionTitleAuthorSubjectThis CollectionTitleAuthorSubject
PublishLoginRegisterHelp
StatisticsView Usage Statistics
All of edoc-ServerCommunity & CollectionTitleAuthorSubjectThis CollectionTitleAuthorSubject
PublishLoginRegisterHelp
StatisticsView Usage Statistics
View Item 
  • edoc-Server Home
  • Schriftenreihen und Sammelbände
  • Fakultäten und Institute der HU
  • Institut für Mathematik
  • Preprints aus dem Institut für Mathematik
  • View Item
  • edoc-Server Home
  • Schriftenreihen und Sammelbände
  • Fakultäten und Institute der HU
  • Institut für Mathematik
  • Preprints aus dem Institut für Mathematik
  • View Item
2011-09-20Buch DOI: 10.18452/2803
Iterative Operator Splitting Methods
Relation to Waveform Relaxation and Exponential Splitting Methods
Geiser, Jürgen
In this paper we describe a technique for closed formulation of an iterative operator-splitting method and embed the method in the classical exponential splitting methods. Since iterative operator splitting have been developed, an abstract framework to relate the method to other classical splitting methods is needed. Here an abstract framework considering the iterative splitting method as waveform-relaxation or ex- ponential splitting method is devised. This is achieved by basing the analysis on semi-groups and fixed-point schemes. Abstract results illustrate differential equations with constant and time- dependent coefficients.
Files in this item
Thumbnail
8.pdf — Adobe PDF — 135.1 Kb
MD5: f0d2ab1e1cfb3d7f9e0f96a2204c50a8
Cite
BibTeX
EndNote
RIS
InCopyright
Details
DINI-Zertifikat 2019OpenAIRE validatedORCID Consortium
Imprint Policy Contact Data Privacy Statement
A service of University Library and Computer and Media Service
© Humboldt-Universität zu Berlin
 
DOI
10.18452/2803
Permanent URL
https://doi.org/10.18452/2803
HTML
<a href="https://doi.org/10.18452/2803">https://doi.org/10.18452/2803</a>