On the intrinsic complexity of point finding in real singular hypersurfaces
dc.contributor.author | Bank, Bernd | |
dc.contributor.author | Giusti, Marc | |
dc.contributor.author | Heintz, Joos | |
dc.contributor.author | Pardo, Luis-Miguel | |
dc.date.accessioned | 2017-06-15T18:22:02Z | |
dc.date.available | 2017-06-15T18:22:02Z | |
dc.date.created | 2011-09-20 | |
dc.date.issued | 2011-09-20 | |
dc.identifier.issn | 0863-0976 | |
dc.identifier.uri | http://edoc.hu-berlin.de/18452/3459 | |
dc.description.abstract | In previous work we designed an efficient procedure that finds an algebraic sample point for each connected component of a smooth real complete intersection variety. This procedure exploits geometric properties of generic polar varieties and its complexity is intrinsic with respect to the problem. In the present paper we introduce a natural construction that allows to tackle the case of a non–smooth real hypersurface by means of a reduction to a smooth complete intersection. | eng |
dc.language.iso | eng | |
dc.publisher | Humboldt-Universität zu Berlin, Mathematisch-Naturwissenschaftliche Fakultät II, Institut für Mathematik | |
dc.rights.uri | http://rightsstatements.org/vocab/InC/1.0/ | |
dc.subject | real polynomial equation solving | eng |
dc.subject | Computational complexity | eng |
dc.subject | singular hypersurface | eng |
dc.subject.ddc | 510 Mathematik | |
dc.title | On the intrinsic complexity of point finding in real singular hypersurfaces | |
dc.type | book | |
dc.identifier.urn | urn:nbn:de:kobv:11-100193020 | |
dc.identifier.doi | http://dx.doi.org/10.18452/2807 | |
local.edoc.pages | 9 | |
local.edoc.type-name | Buch | |
local.edoc.container-type | series | |
local.edoc.container-type-name | Schriftenreihe | |
local.edoc.container-year | 2009 | |
dc.identifier.zdb | 2075199-0 | |
bua.series.name | Preprints aus dem Institut für Mathematik | |
bua.series.issuenumber | 2009,12 |