Logo of Humboldt-Universität zu BerlinLogo of Humboldt-Universität zu Berlin
edoc-Server
Open-Access-Publikationsserver der Humboldt-Universität
de|en
Header image: facade of Humboldt-Universität zu Berlin
View Item 
  • edoc-Server Home
  • Schriftenreihen und Sammelbände
  • Fakultäten und Institute der HU
  • Institut für Mathematik
  • Preprints aus dem Institut für Mathematik
  • View Item
  • edoc-Server Home
  • Schriftenreihen und Sammelbände
  • Fakultäten und Institute der HU
  • Institut für Mathematik
  • Preprints aus dem Institut für Mathematik
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.
All of edoc-ServerCommunity & CollectionTitleAuthorSubjectThis CollectionTitleAuthorSubject
PublishLoginRegisterHelp
StatisticsView Usage Statistics
All of edoc-ServerCommunity & CollectionTitleAuthorSubjectThis CollectionTitleAuthorSubject
PublishLoginRegisterHelp
StatisticsView Usage Statistics
View Item 
  • edoc-Server Home
  • Schriftenreihen und Sammelbände
  • Fakultäten und Institute der HU
  • Institut für Mathematik
  • Preprints aus dem Institut für Mathematik
  • View Item
  • edoc-Server Home
  • Schriftenreihen und Sammelbände
  • Fakultäten und Institute der HU
  • Institut für Mathematik
  • Preprints aus dem Institut für Mathematik
  • View Item
2011-09-20Buch DOI: 10.18452/2808
Iterative Operator-Splitting Methods and Continuous and Discrete Case
Theory and Applications
Geiser, Jürgen
Tanoğlu, Gamze
In this paper, we contribute waveform relaxation and iterative splitting methods for systems of parabolic differential equations. We could present an analysis comparing both methods and see advantages in the iterative splitting method. Here the benefits are combination of large and small time-scales, which one the large time-scale the computational effort is less and on the small time-scale the computational work is tremendous. We discuss the convergence analysis in the finite and infinite time-interval, see [Vandewalle 1993]. The applications can be done for parabolic equations with nonlinear parts. Such problems can be decoupled in two problems, where on the one side the less investigated operator is solved with cheap methods, e.g. implicit Euler methods and the other part with high accurate methods, e.g. Runge-Kutta methods of higher order. We present the method with comparison to standard Fractional-Stepping methods. The benefit will be the individual handling of each operators with adapted standard higher order time-integrators. The methods are applied to convection-diffusion-reaction equations as used to model financial options. Finally we discuss the modified methods for multi-dimensional and multi-physical problems.
Files in this item
Thumbnail
13.pdf — Adobe PDF — 426.6 Kb
MD5: 84a4c2325fdf4c4a031e49a394d499ca
Cite
BibTeX
EndNote
RIS
InCopyright
Details
DINI-Zertifikat 2019OpenAIRE validatedORCID Consortium
Imprint Policy Contact Data Privacy Statement
A service of University Library and Computer and Media Service
© Humboldt-Universität zu Berlin
 
DOI
10.18452/2808
Permanent URL
https://doi.org/10.18452/2808
HTML
<a href="https://doi.org/10.18452/2808">https://doi.org/10.18452/2808</a>