Logo of Humboldt-Universität zu BerlinLogo of Humboldt-Universität zu Berlin
edoc-Server
Open-Access-Publikationsserver der Humboldt-Universität
de|en
Header image: facade of Humboldt-Universität zu Berlin
View Item 
  • edoc-Server Home
  • Schriftenreihen und Sammelbände
  • Fakultäten und Institute der HU
  • Institut für Mathematik
  • Preprints aus dem Institut für Mathematik
  • View Item
  • edoc-Server Home
  • Schriftenreihen und Sammelbände
  • Fakultäten und Institute der HU
  • Institut für Mathematik
  • Preprints aus dem Institut für Mathematik
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.
All of edoc-ServerCommunity & CollectionTitleAuthorSubjectThis CollectionTitleAuthorSubject
PublishLoginRegisterHelp
StatisticsView Usage Statistics
All of edoc-ServerCommunity & CollectionTitleAuthorSubjectThis CollectionTitleAuthorSubject
PublishLoginRegisterHelp
StatisticsView Usage Statistics
View Item 
  • edoc-Server Home
  • Schriftenreihen und Sammelbände
  • Fakultäten und Institute der HU
  • Institut für Mathematik
  • Preprints aus dem Institut für Mathematik
  • View Item
  • edoc-Server Home
  • Schriftenreihen und Sammelbände
  • Fakultäten und Institute der HU
  • Institut für Mathematik
  • Preprints aus dem Institut für Mathematik
  • View Item
2011-09-20Buch DOI: 10.18452/2817
A combined BDF-semismooth Newton approach for time-dependent Bingham flow
Reyes, Juan Carlos De Los
Andrade, Sergio González
This paper is devoted to the numerical simulation of time-dependent convective Bingham flow in cavities. Motivated by a primal-dual regularization of the stationary model, a family of regularized time-dependent problems is introduced. Well posedness of the regularized problems is proved and convergence of the regularized solutions to a solution of the original multiplier system is verified. For the numerical solution of each regularized multiplier system, a fully-discrete approach is studied. A stable finite element approximation in space, together with a second order backward differentiation formula for the time discretization are proposed. The discretization scheme yields a system of Newton differentiable nonlinear equations in each time step, for which a semismooth Newton algorithm is utilized. We present two numerical experiments to verify the main properties of the proposed approach.
Files in this item
Thumbnail
22.pdf — Adobe PDF — 1.012 Mb
MD5: 448a4483a61cebb654ef19a11019919e
Cite
BibTeX
EndNote
RIS
InCopyright
Details
DINI-Zertifikat 2019OpenAIRE validatedORCID Consortium
Imprint Policy Contact Data Privacy Statement
A service of University Library and Computer and Media Service
© Humboldt-Universität zu Berlin
 
DOI
10.18452/2817
Permanent URL
https://doi.org/10.18452/2817
HTML
<a href="https://doi.org/10.18452/2817">https://doi.org/10.18452/2817</a>