Show simple item record

2011-09-27Buch DOI: 10.18452/2826
A Shortcut to the Q-Operator
dc.contributor.authorBazhanov, Vladimir V.
dc.contributor.authorLukowski, Tomasz
dc.contributor.authorMeneghelli, Carlo
dc.contributor.authorStaudacher, Matthias
dc.date.accessioned2017-06-15T18:25:43Z
dc.date.available2017-06-15T18:25:43Z
dc.date.created2011-09-27
dc.date.issued2011-09-27
dc.identifier.issn0863-0976
dc.identifier.urihttp://edoc.hu-berlin.de/18452/3478
dc.description.abstractBaxter's Q-operator is generally believed to be the most powerful tool for the exact diagonalization of integrable models. Curiously, it has hitherto not yet been properly constructed in the simplest such system, the compact spin-1/2 Heisenberg-Bethe XXX spin chain. Here we attempt to fill this gap and show how two linearly independent operatorial solutions to Baxter's TQ equation may be constructed as commuting transfer matrices if a twist field is present. The latter are obtained by tracing over infinitely many oscillator states living in the auxiliary channel of an associated monodromy matrix. We furthermore compare and differentiate our approach to earlier articles addressing the problem of the construction of the Q-operator for the XXX chain. Finally we speculate on the importance of Q-operators for the physical interpretation of recent proposals for the Y-system of AdS/CFT.eng
dc.language.isoeng
dc.publisherHumboldt-Universität zu Berlin, Mathematisch-Naturwissenschaftliche Fakultät II, Institut für Mathematik
dc.subject.ddc510 Mathematik
dc.titleA Shortcut to the Q-Operator
dc.typebook
dc.identifier.urnurn:nbn:de:kobv:11-100193429
dc.identifier.doihttp://dx.doi.org/10.18452/2826
local.edoc.container-titlePreprints aus dem Institut für Mathematik
local.edoc.pages42
local.edoc.type-nameBuch
local.edoc.container-typeseries
local.edoc.container-type-nameSchriftenreihe
local.edoc.container-volume2010
local.edoc.container-issue7
local.edoc.container-year2010
local.edoc.container-erstkatid2075199-0

Show simple item record