Logo of Humboldt-Universität zu BerlinLogo of Humboldt-Universität zu Berlin
edoc-Server
Open-Access-Publikationsserver der Humboldt-Universität
de|en
Header image: facade of Humboldt-Universität zu Berlin
View Item 
  • edoc-Server Home
  • Schriftenreihen und Sammelbände
  • Fakultäten und Institute der HU
  • Institut für Mathematik
  • Preprints aus dem Institut für Mathematik
  • View Item
  • edoc-Server Home
  • Schriftenreihen und Sammelbände
  • Fakultäten und Institute der HU
  • Institut für Mathematik
  • Preprints aus dem Institut für Mathematik
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.
All of edoc-ServerCommunity & CollectionTitleAuthorSubjectThis CollectionTitleAuthorSubject
PublishLoginRegisterHelp
StatisticsView Usage Statistics
All of edoc-ServerCommunity & CollectionTitleAuthorSubjectThis CollectionTitleAuthorSubject
PublishLoginRegisterHelp
StatisticsView Usage Statistics
View Item 
  • edoc-Server Home
  • Schriftenreihen und Sammelbände
  • Fakultäten und Institute der HU
  • Institut für Mathematik
  • Preprints aus dem Institut für Mathematik
  • View Item
  • edoc-Server Home
  • Schriftenreihen und Sammelbände
  • Fakultäten und Institute der HU
  • Institut für Mathematik
  • Preprints aus dem Institut für Mathematik
  • View Item
2011-09-27Buch DOI: 10.18452/2827
Magnus integrator and successive approximation for solving time-dependent problems
Geiser, Jürgen
Magnus integrator and successive approximation for solving time-dependent problems. The Magnus expansion has been intensely studied and widely applied for solving explicitly time-dependent problems. Due to its exponential character, it is rather difficult to derive practical algorithms beyond the sixth-order. An alternative method is based on successive approximation methods, that taken into account the temporally inhomogeneous equation (method of Tanabe and Sobolevski). In this work, we show that the recently derived ideas of the successive approximation method in a splitting method. Examples are discussed.
Files in this item
Thumbnail
10.pdf — Adobe PDF — 1.050 Mb
MD5: 35ff5b1394caaba324ad18c3a8afacc2
Cite
BibTeX
EndNote
RIS
InCopyright
Details
DINI-Zertifikat 2019OpenAIRE validatedORCID Consortium
Imprint Policy Contact Data Privacy Statement
A service of University Library and Computer and Media Service
© Humboldt-Universität zu Berlin
 
DOI
10.18452/2827
Permanent URL
https://doi.org/10.18452/2827
HTML
<a href="https://doi.org/10.18452/2827">https://doi.org/10.18452/2827</a>