Show simple item record

2011-09-27Buch DOI: 10.18452/2827
Magnus integrator and successive approximation for solving time-dependent problems
dc.contributor.authorGeiser, Jürgen
dc.date.accessioned2017-06-15T18:25:54Z
dc.date.available2017-06-15T18:25:54Z
dc.date.created2011-09-27
dc.date.issued2011-09-27
dc.identifier.issn0863-0976
dc.identifier.urihttp://edoc.hu-berlin.de/18452/3479
dc.description.abstractMagnus integrator and successive approximation for solving time-dependent problems. The Magnus expansion has been intensely studied and widely applied for solving explicitly time-dependent problems. Due to its exponential character, it is rather difficult to derive practical algorithms beyond the sixth-order. An alternative method is based on successive approximation methods, that taken into account the temporally inhomogeneous equation (method of Tanabe and Sobolevski). In this work, we show that the recently derived ideas of the successive approximation method in a splitting method. Examples are discussed.eng
dc.language.isoeng
dc.publisherHumboldt-Universität zu Berlin, Mathematisch-Naturwissenschaftliche Fakultät II, Institut für Mathematik
dc.rights.urihttp://rightsstatements.org/vocab/InC/1.0/
dc.subjectMagnus Integrator Successive Approximation exponential splittingeng
dc.subject.ddc510 Mathematik
dc.titleMagnus integrator and successive approximation for solving time-dependent problems
dc.typebook
dc.identifier.urnurn:nbn:de:kobv:11-100193433
dc.identifier.doihttp://dx.doi.org/10.18452/2827
local.edoc.container-titlePreprints aus dem Institut für Mathematik
local.edoc.pages28
local.edoc.type-nameBuch
local.edoc.container-typeseries
local.edoc.container-type-nameSchriftenreihe
local.edoc.container-volume2010
local.edoc.container-issue10
local.edoc.container-year2010
local.edoc.container-erstkatid2075199-0

Show simple item record