2011-09-27Buch DOI: 10.18452/2834
Operator-Splitting Methods Respecting Eigenvalue Problems For Shallow Shelf Equations With Basal Drag
 dc.contributor.author Geiser, Jürgen dc.contributor.author Calov, Reinhard dc.contributor.author Recknagel, Thomas dc.date.accessioned 2017-06-15T18:27:16Z dc.date.available 2017-06-15T18:27:16Z dc.date.created 2011-09-27 dc.date.issued 2011-09-27 dc.identifier.issn 0863-0976 dc.identifier.uri http://edoc.hu-berlin.de/18452/3486 dc.description.abstract We discuss different numerical methods for solving the shallow shelf equations with basal drag. The coupled equations are decomposed into operators for membranes stresses, basal shear stress and driving stress. Applying reasonable parameter values, we demonstrate that the operator of the membrane stresses is much stiffer than operator of the basal shear stress. Therefore, we propose a new splitting method, which alternates between the iteration on the membrane-stress operator and the basal-shear operator, with a stronger iteration on the operator of the membrane stress. We show that this splitting improves the computational performance of the numerical method, although the choice of the (standard) method to solve for all operators in one step speeds up the scheme too. (Based on the delicate and coupled equation we propose a new decomposition method to decouple into simpler solvable sub-equations. After a number of approximations we consider the error of the method and proposed a choice of the operators.) eng dc.language.iso eng dc.publisher Humboldt-Universität zu Berlin, Mathematisch-Naturwissenschaftliche Fakultät II, Institut für Mathematik dc.rights.uri http://rightsstatements.org/vocab/InC/1.0/ dc.subject partial differential equations eng dc.subject iterative methods eng dc.subject operator-splitting methods eng dc.subject eigenvalue approach eng dc.subject.ddc 510 Mathematik dc.title Operator-Splitting Methods Respecting Eigenvalue Problems For Shallow Shelf Equations With Basal Drag dc.type book dc.identifier.urn urn:nbn:de:kobv:11-100193501 dc.identifier.doi http://dx.doi.org/10.18452/2834 local.edoc.pages 31 local.edoc.type-name Buch local.edoc.container-type series local.edoc.container-type-name Schriftenreihe local.edoc.container-year 2010 dc.identifier.zdb 2075199-0 bua.series.name Preprints aus dem Institut für Mathematik bua.series.issuenumber 2010,17