Logo of Humboldt-Universität zu BerlinLogo of Humboldt-Universität zu Berlin
edoc-Server
Open-Access-Publikationsserver der Humboldt-Universität
de|en
Header image: facade of Humboldt-Universität zu Berlin
View Item 
  • edoc-Server Home
  • Schriftenreihen und Sammelbände
  • Fakultäten und Institute der HU
  • Institut für Mathematik
  • Preprints aus dem Institut für Mathematik
  • View Item
  • edoc-Server Home
  • Schriftenreihen und Sammelbände
  • Fakultäten und Institute der HU
  • Institut für Mathematik
  • Preprints aus dem Institut für Mathematik
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.
All of edoc-ServerCommunity & CollectionTitleAuthorSubjectThis CollectionTitleAuthorSubject
PublishLoginRegisterHelp
StatisticsView Usage Statistics
All of edoc-ServerCommunity & CollectionTitleAuthorSubjectThis CollectionTitleAuthorSubject
PublishLoginRegisterHelp
StatisticsView Usage Statistics
View Item 
  • edoc-Server Home
  • Schriftenreihen und Sammelbände
  • Fakultäten und Institute der HU
  • Institut für Mathematik
  • Preprints aus dem Institut für Mathematik
  • View Item
  • edoc-Server Home
  • Schriftenreihen und Sammelbände
  • Fakultäten und Institute der HU
  • Institut für Mathematik
  • Preprints aus dem Institut für Mathematik
  • View Item
2011-09-27Buch DOI: 10.18452/2835
Iterative Operator Splitting Method for Coupled Problems
Transport and Electric Fields
Geiser, Jürgen
Küttel, Felix
In this article a new approach is considered for implementing operator splitting methods for transport problems, influenced by eletric fields. Our motivation came to model PE-CVD (plasma-enhanced chemical vapor deposition) processes, means the flow of species to a gas-phase, which are influenced by an electric field. We consider a convection-diffusion equation and a Lorence force in the electrostatic case. The iterative splitting schemes is given as an embedded coupling method and we apply such a scheme as a fast solver. The decomposition analysis is discussed for the nonlinear case. Numerical experiments are given with respect to explicit Adam-Bashforth schemes. We discuss the convergence behavior in time and space for the iterative schemes.
Files in this item
Thumbnail
18.pdf — Adobe PDF — 195.2 Kb
MD5: 8de04463cae516f1a006d9b7127848df
Cite
BibTeX
EndNote
RIS
InCopyright
Details
DINI-Zertifikat 2019OpenAIRE validatedORCID Consortium
Imprint Policy Contact Data Privacy Statement
A service of University Library and Computer and Media Service
© Humboldt-Universität zu Berlin
 
DOI
10.18452/2835
Permanent URL
https://doi.org/10.18452/2835
HTML
<a href="https://doi.org/10.18452/2835">https://doi.org/10.18452/2835</a>