Show simple item record

2011-09-27Buch DOI: 10.18452/2836
From convergence principles to stability and optimality
dc.contributor.authorKlatte, Diethard
dc.contributor.authorKruger, Alexander
dc.contributor.authorKummer, Bernd
dc.date.accessioned2017-06-15T18:27:40Z
dc.date.available2017-06-15T18:27:40Z
dc.date.created2011-09-27
dc.date.issued2011-09-27
dc.identifier.issn0863-0976
dc.identifier.urihttp://edoc.hu-berlin.de/18452/3488
dc.description.abstractWe show in a rather general setting that Hoelder and Lipschitz stability properties of solutions to variational problems can be characterized by convergence of more or less abstract iteration schemes. Depending on the principle of convergence, new and intrinsic stability conditions can be derived. Our most abstract models are (multi-) functions on complete metric spaces. The relevance of this approach is illustrated by deriving both classical and new results on existence and optimality conditions, stability of feasible and solution sets and convergence behavior of solution procedures.eng
dc.language.isoeng
dc.publisherHumboldt-Universität zu Berlin, Mathematisch-Naturwissenschaftliche Fakultät II, Institut für Mathematik
dc.rights.urihttp://rightsstatements.org/vocab/InC/1.0/
dc.subjectGeneralized equationseng
dc.subjectHoelder stability iteration schemeseng
dc.subjectcalmnesseng
dc.subjectAubin propertyeng
dc.subjectvariational principleseng
dc.subject.ddc510 Mathematik
dc.titleFrom convergence principles to stability and optimality
dc.typebook
dc.identifier.urnurn:nbn:de:kobv:11-100193523
dc.identifier.doihttp://dx.doi.org/10.18452/2836
local.edoc.container-titlePreprints aus dem Institut für Mathematik
local.edoc.pages22
local.edoc.type-nameBuch
local.edoc.container-typeseries
local.edoc.container-type-nameSchriftenreihe
local.edoc.container-volume2010
local.edoc.container-issue19
local.edoc.container-year2010
local.edoc.container-erstkatid2075199-0

Show simple item record