Logo of Humboldt-Universität zu BerlinLogo of Humboldt-Universität zu Berlin
edoc-Server
Open-Access-Publikationsserver der Humboldt-Universität
de|en
Header image: facade of Humboldt-Universität zu Berlin
View Item 
  • edoc-Server Home
  • Schriftenreihen und Sammelbände
  • Fakultäten und Institute der HU
  • Institut für Mathematik
  • Preprints aus dem Institut für Mathematik
  • View Item
  • edoc-Server Home
  • Schriftenreihen und Sammelbände
  • Fakultäten und Institute der HU
  • Institut für Mathematik
  • Preprints aus dem Institut für Mathematik
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.
All of edoc-ServerCommunity & CollectionTitleAuthorSubjectThis CollectionTitleAuthorSubject
PublishLoginRegisterHelp
StatisticsView Usage Statistics
All of edoc-ServerCommunity & CollectionTitleAuthorSubjectThis CollectionTitleAuthorSubject
PublishLoginRegisterHelp
StatisticsView Usage Statistics
View Item 
  • edoc-Server Home
  • Schriftenreihen und Sammelbände
  • Fakultäten und Institute der HU
  • Institut für Mathematik
  • Preprints aus dem Institut für Mathematik
  • View Item
  • edoc-Server Home
  • Schriftenreihen und Sammelbände
  • Fakultäten und Institute der HU
  • Institut für Mathematik
  • Preprints aus dem Institut für Mathematik
  • View Item
2013-09-12Buch DOI: 10.18452/2841
Operator-Splitting Methods Respecting Eigenvalue Problems For Shallow Shelf Equations With Basal Drag
Calov, Reinhard
Geiser, Jürgen
We discuss different numerical methods for solving the shallow shelf equations with basal drag. The coupled equations are decomposed into operators for membranes stresses, basal shear stress and driving stress. Applying reasonable parameter values, we demonstrate that the operator of the membrane stresses is much stiffer than operator of the basal shear stress. Therefore, we propose a new splitting method, which alternates between the iteration on the membrane-stress operator and the basal-shear operator, with a stronger iteration on the operator of the membrane stress. We show that this splitting improves the computational performance of the numerical method, although the choice of the (standard) method to solve for all operators in one step speeds up the scheme too. (Based on the delicate and coupled equation we propose a new decomposition method to decouple into simpler solvable sub-equations. After a number of approximations we consider the error of the method and proposed a choice of the operators.)
Files in this item
Thumbnail
17.pdf — Adobe PDF — 129.8 Kb
MD5: ac9e09a4183e483f37bec1ca72b190ce
Cite
BibTeX
EndNote
RIS
InCopyright
Details
DINI-Zertifikat 2019OpenAIRE validatedORCID Consortium
Imprint Policy Contact Data Privacy Statement
A service of University Library and Computer and Media Service
© Humboldt-Universität zu Berlin
 
DOI
10.18452/2841
Permanent URL
https://doi.org/10.18452/2841
HTML
<a href="https://doi.org/10.18452/2841">https://doi.org/10.18452/2841</a>