Logo of Humboldt-Universität zu BerlinLogo of Humboldt-Universität zu Berlin
edoc-Server
Open-Access-Publikationsserver der Humboldt-Universität
de|en
Header image: facade of Humboldt-Universität zu Berlin
View Item 
  • edoc-Server Home
  • Schriftenreihen und Sammelbände
  • Fakultäten und Institute der HU
  • Wirtschaftswissenschaftliche Fakultät
  • Discussion papers of interdisciplinary research project 373 / Sonderforschungsbereich 373
  • View Item
  • edoc-Server Home
  • Schriftenreihen und Sammelbände
  • Fakultäten und Institute der HU
  • Wirtschaftswissenschaftliche Fakultät
  • Discussion papers of interdisciplinary research project 373 / Sonderforschungsbereich 373
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.
All of edoc-ServerCommunity & CollectionTitleAuthorSubjectThis CollectionTitleAuthorSubject
PublishLoginRegisterHelp
StatisticsView Usage Statistics
All of edoc-ServerCommunity & CollectionTitleAuthorSubjectThis CollectionTitleAuthorSubject
PublishLoginRegisterHelp
StatisticsView Usage Statistics
View Item 
  • edoc-Server Home
  • Schriftenreihen und Sammelbände
  • Fakultäten und Institute der HU
  • Wirtschaftswissenschaftliche Fakultät
  • Discussion papers of interdisciplinary research project 373 / Sonderforschungsbereich 373
  • View Item
  • edoc-Server Home
  • Schriftenreihen und Sammelbände
  • Fakultäten und Institute der HU
  • Wirtschaftswissenschaftliche Fakultät
  • Discussion papers of interdisciplinary research project 373 / Sonderforschungsbereich 373
  • View Item
2001-09-07Buch DOI: 10.18452/3458
Dynamic Nonparametric State Price Density EstimationUsing Constrained Least Squares and the Bootstrap
Härdle, Wolfgang Karl cc
Yatchew, Adonis
The economic theory of option pricing imposes constraints on the structure of call functions and state price densities (SPDs). Except in a few polar cases, it does not prescribe functional forms. This paper proposes a nonparametric estimator of option pricing models which incorporates various restrictions within a single least squares procedure thus permitting investigation of a wide variety of model specifications and constraints. Among these we consider monotonicity and convexity of the call function and integration to one of the state price density. The procedure easily accommodates heteroskedasticity of the residuals. Static and dynamic properties can be tested using both asymptotic and bootstrap methods. Our monte carlo simulations suggest that bootstrap confidence intervals are far superior to aymptotic ones particularly when estimating derivatives of the call function. We apply the techniques to option pricing data on the DAX.
Files in this item
Thumbnail
16.pdf — Adobe PDF — 788.5 Kb
MD5: 97782251c598dc53a5ee7053dfa666de
Cite
BibTeX
EndNote
RIS
InCopyright
Details
DINI-Zertifikat 2019OpenAIRE validatedORCID Consortium
Imprint Policy Contact Data Privacy Statement
A service of University Library and Computer and Media Service
© Humboldt-Universität zu Berlin
 
DOI
10.18452/3458
Permanent URL
https://doi.org/10.18452/3458
HTML
<a href="https://doi.org/10.18452/3458">https://doi.org/10.18452/3458</a>