Logo of Humboldt-Universität zu BerlinLogo of Humboldt-Universität zu Berlin
edoc-Server
Open-Access-Publikationsserver der Humboldt-Universität
de|en
Header image: facade of Humboldt-Universität zu Berlin
View Item 
  • edoc-Server Home
  • Schriftenreihen und Sammelbände
  • Fakultäten und Institute der HU
  • Wirtschaftswissenschaftliche Fakultät
  • Discussion papers of interdisciplinary research project 373 / Sonderforschungsbereich 373
  • View Item
  • edoc-Server Home
  • Schriftenreihen und Sammelbände
  • Fakultäten und Institute der HU
  • Wirtschaftswissenschaftliche Fakultät
  • Discussion papers of interdisciplinary research project 373 / Sonderforschungsbereich 373
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.
All of edoc-ServerCommunity & CollectionTitleAuthorSubjectThis CollectionTitleAuthorSubject
PublishLoginRegisterHelp
StatisticsView Usage Statistics
All of edoc-ServerCommunity & CollectionTitleAuthorSubjectThis CollectionTitleAuthorSubject
PublishLoginRegisterHelp
StatisticsView Usage Statistics
View Item 
  • edoc-Server Home
  • Schriftenreihen und Sammelbände
  • Fakultäten und Institute der HU
  • Wirtschaftswissenschaftliche Fakultät
  • Discussion papers of interdisciplinary research project 373 / Sonderforschungsbereich 373
  • View Item
  • edoc-Server Home
  • Schriftenreihen und Sammelbände
  • Fakultäten und Institute der HU
  • Wirtschaftswissenschaftliche Fakultät
  • Discussion papers of interdisciplinary research project 373 / Sonderforschungsbereich 373
  • View Item
2002-10-17Buch DOI: 10.18452/3535
Exploring Credit Data
Müller, Marlene
Härdle, Wolfgang Karl cc
Credit scoring methods aim to assess the default risk of a potential borrower. This involves typically the calculation of a credit score and the estimation of the probability of default. One of the standard approaches is logistic discriminant analysis, also referred to as logit model. This model maps explanatory variables for the default risk to a credit score using a linear function. Nonlinearity can be included by using polynomial terms or piecewise linear functions. This may give however only a limited reflection of a truly nonlinear relationship. Moreover, an additional modeling step may be necessary to determine the optimal polynomial order or the optimal interval classification. This paper presents semiparametric extensions of the logit model which directly allow for nonlinear relationships to be part of the explanatory variables. The technique is based on the theory generalized partial linear models. We illustrate the advantages of this approach using a consumer retail banking data set.
Files in this item
Thumbnail
79.pdf — Adobe PDF — 515.0 Kb
MD5: 5961421a58f2230ae9ba9d0da6bf7a3e
Cite
BibTeX
EndNote
RIS
InCopyright
Details
DINI-Zertifikat 2019OpenAIRE validatedORCID Consortium
Imprint Policy Contact Data Privacy Statement
A service of University Library and Computer and Media Service
© Humboldt-Universität zu Berlin
 
DOI
10.18452/3535
Permanent URL
https://doi.org/10.18452/3535
HTML
<a href="https://doi.org/10.18452/3535">https://doi.org/10.18452/3535</a>