Logo of Humboldt-Universität zu BerlinLogo of Humboldt-Universität zu Berlin
edoc-Server
Open-Access-Publikationsserver der Humboldt-Universität
de|en
Header image: facade of Humboldt-Universität zu Berlin
View Item 
  • edoc-Server Home
  • Schriftenreihen und Sammelbände
  • Fakultäten und Institute der HU
  • Wirtschaftswissenschaftliche Fakultät
  • Discussion papers of interdisciplinary research project 373 / Sonderforschungsbereich 373
  • View Item
  • edoc-Server Home
  • Schriftenreihen und Sammelbände
  • Fakultäten und Institute der HU
  • Wirtschaftswissenschaftliche Fakultät
  • Discussion papers of interdisciplinary research project 373 / Sonderforschungsbereich 373
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.
All of edoc-ServerCommunity & CollectionTitleAuthorSubjectThis CollectionTitleAuthorSubject
PublishLoginRegisterHelp
StatisticsView Usage Statistics
All of edoc-ServerCommunity & CollectionTitleAuthorSubjectThis CollectionTitleAuthorSubject
PublishLoginRegisterHelp
StatisticsView Usage Statistics
View Item 
  • edoc-Server Home
  • Schriftenreihen und Sammelbände
  • Fakultäten und Institute der HU
  • Wirtschaftswissenschaftliche Fakultät
  • Discussion papers of interdisciplinary research project 373 / Sonderforschungsbereich 373
  • View Item
  • edoc-Server Home
  • Schriftenreihen und Sammelbände
  • Fakultäten und Institute der HU
  • Wirtschaftswissenschaftliche Fakultät
  • Discussion papers of interdisciplinary research project 373 / Sonderforschungsbereich 373
  • View Item
2005-10-12Buch DOI: 10.18452/3559
Selfinformative Limits of Bayes Estimates andGeneralized Maximum Likelihood
Bunke, Olaf
Johannes, Jan
A definition of selfinformative Bayes carriers or limits is given as a description of an approach to noninformative Bayes estimation in non- and semiparametric models. It takes the posterior w.r.t. a prior as a new prior and repeats this procedure again and again. A main objective of the paper is to clarify the relation between selfinformative carriers or limits and maximum likelihood estimates (MLE's). For a model with dominated probability distributions we state sufficient conditionss under which the set of MLE's is a selfinformative carrier or in the case of a unique MLE its selfinformative limit property. Mixture models are covered. The result on carriers is extended to more general models without dominating measure. Selfinformative limits in the case of estimation of hazard functions based in censored observations and in the case of normal linear models with possibly nonidentifiable parameters are shown to be identical to the generalized MLE's in the sense of Gill (1989) and Kiefer and Wolfowitz (1956). Selfinformative limits are given for semiparametric linear models. For a location model they are identical to generalized MLE's, while this is not true in general.
Files in this item
Thumbnail
5.pdf — Adobe PDF — 204.5 Kb
MD5: 70e073395750607657e5b28367a828b0
Cite
BibTeX
EndNote
RIS
InCopyright
Details
DINI-Zertifikat 2019OpenAIRE validatedORCID Consortium
Imprint Policy Contact Data Privacy Statement
A service of University Library and Computer and Media Service
© Humboldt-Universität zu Berlin
 
DOI
10.18452/3559
Permanent URL
https://doi.org/10.18452/3559
HTML
<a href="https://doi.org/10.18452/3559">https://doi.org/10.18452/3559</a>