Logo of Humboldt-Universität zu BerlinLogo of Humboldt-Universität zu Berlin
edoc-Server
Open-Access-Publikationsserver der Humboldt-Universität
de|en
Header image: facade of Humboldt-Universität zu Berlin
View Item 
  • edoc-Server Home
  • Schriftenreihen und Sammelbände
  • Fakultäten und Institute der HU
  • Wirtschaftswissenschaftliche Fakultät
  • Discussion papers of interdisciplinary research project 373 / Sonderforschungsbereich 373
  • View Item
  • edoc-Server Home
  • Schriftenreihen und Sammelbände
  • Fakultäten und Institute der HU
  • Wirtschaftswissenschaftliche Fakultät
  • Discussion papers of interdisciplinary research project 373 / Sonderforschungsbereich 373
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.
All of edoc-ServerCommunity & CollectionTitleAuthorSubjectThis CollectionTitleAuthorSubject
PublishLoginRegisterHelp
StatisticsView Usage Statistics
All of edoc-ServerCommunity & CollectionTitleAuthorSubjectThis CollectionTitleAuthorSubject
PublishLoginRegisterHelp
StatisticsView Usage Statistics
View Item 
  • edoc-Server Home
  • Schriftenreihen und Sammelbände
  • Fakultäten und Institute der HU
  • Wirtschaftswissenschaftliche Fakultät
  • Discussion papers of interdisciplinary research project 373 / Sonderforschungsbereich 373
  • View Item
  • edoc-Server Home
  • Schriftenreihen und Sammelbände
  • Fakultäten und Institute der HU
  • Wirtschaftswissenschaftliche Fakultät
  • Discussion papers of interdisciplinary research project 373 / Sonderforschungsbereich 373
  • View Item
2001-08-01Buch DOI: 10.18452/3597
Bootstrap Methods For Time Series
Härdle, Wolfgang Karl cc
Horowitz, Joel L.
Kreiss, Jens-Peter
The bootstrap is a method for estimating the distribution of an estimator or test statistic by resampling one’s data or a model estimated from the data. The methods that are available for implementing the bootstrap and the accuracy of bootstrap estimates depend on whether the data are a random sample from a distribution or a time series. This paper is concerned with the application of the bootstrap to time-series data when one does not have a finite-dimensional parametric model that reduces the data generation process to independent random sampling. We review the methods that have been proposed for implementing the bootstrap in this situation and discuss the accuracy of these methods relative to that of first-order asymptotic approximations. We argue that methods for implementing the bootstrap with time-series data are not as well understood as methods for data that are sampled randomly from a distribution. Moreover, the performance of the bootstrap as measured by the rate of convergence of estimation errors tends to be poorer with time series than with random samples. This is an important problem for applied research because first-order asymptotic approximations are often inaccurate and misleading with time-series data and samples of the sizes encountered in applications. We conclude that there is a need for further research in the application of the bootstrap to time series, and we describe some of the important unsolved problems.
Files in this item
Thumbnail
59.pdf — Adobe PDF — 618.5 Kb
MD5: b49595aec44f3f8298902185d1c3db8d
Cite
BibTeX
EndNote
RIS
InCopyright
Details
DINI-Zertifikat 2019OpenAIRE validatedORCID Consortium
Imprint Policy Contact Data Privacy Statement
A service of University Library and Computer and Media Service
© Humboldt-Universität zu Berlin
 
DOI
10.18452/3597
Permanent URL
https://doi.org/10.18452/3597
HTML
<a href="https://doi.org/10.18452/3597">https://doi.org/10.18452/3597</a>