Logo of Humboldt-Universität zu BerlinLogo of Humboldt-Universität zu Berlin
edoc-Server
Open-Access-Publikationsserver der Humboldt-Universität
de|en
Header image: facade of Humboldt-Universität zu Berlin
View Item 
  • edoc-Server Home
  • Schriftenreihen und Sammelbände
  • Fakultäten und Institute der HU
  • Wirtschaftswissenschaftliche Fakultät
  • Discussion papers of interdisciplinary research project 373 / Sonderforschungsbereich 373
  • View Item
  • edoc-Server Home
  • Schriftenreihen und Sammelbände
  • Fakultäten und Institute der HU
  • Wirtschaftswissenschaftliche Fakultät
  • Discussion papers of interdisciplinary research project 373 / Sonderforschungsbereich 373
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.
All of edoc-ServerCommunity & CollectionTitleAuthorSubjectThis CollectionTitleAuthorSubject
PublishLoginRegisterHelp
StatisticsView Usage Statistics
All of edoc-ServerCommunity & CollectionTitleAuthorSubjectThis CollectionTitleAuthorSubject
PublishLoginRegisterHelp
StatisticsView Usage Statistics
View Item 
  • edoc-Server Home
  • Schriftenreihen und Sammelbände
  • Fakultäten und Institute der HU
  • Wirtschaftswissenschaftliche Fakultät
  • Discussion papers of interdisciplinary research project 373 / Sonderforschungsbereich 373
  • View Item
  • edoc-Server Home
  • Schriftenreihen und Sammelbände
  • Fakultäten und Institute der HU
  • Wirtschaftswissenschaftliche Fakultät
  • Discussion papers of interdisciplinary research project 373 / Sonderforschungsbereich 373
  • View Item
2005-10-17Buch DOI: 10.18452/3613
Consistent Testing for Stochastic Dominance under General Sampling Schemes
Linton, Oliver
Maasoumi, Esfandiar
Whang, Yoon-Jae
We propose a procedure for estimating the critical values of the extended Kolmogorov-Smirnov tests of First and Second Order Stochastic Dominance in the general K-prospect case. We allow for the observations to be serially dependent and, for the first time, we can accommodate general dependence amongst the prospects which are to be ranked. Also, the prospects may be the residuals from certain conditional models, opening the way for conditional ranking. We also propose a test of Prospect Stochastic Dominance. Our method is subsampling; we show that the resulting tests are consistent and powerful against some N(exp-1/2) local alternatives even when computed with a data-based subsample size. We also propose some heuristic methods for selecting subsample size and demonstrate in simulations that they perform reasonably. We show that our test is asymptotically similar on the entire boundary of the null hypothesis, and is unbiased. In comparison, any method based on resampling or simulating from the least favorable distribution does not have these properties and consequently will have less power against some alternatives.
Files in this item
Thumbnail
31.pdf — Adobe PDF — 1.005 Mb
MD5: 0075e3657a4ffbbb884b3e9b837ca51d
Cite
BibTeX
EndNote
RIS
InCopyright
Details
DINI-Zertifikat 2019OpenAIRE validatedORCID Consortium
Imprint Policy Contact Data Privacy Statement
A service of University Library and Computer and Media Service
© Humboldt-Universität zu Berlin
 
DOI
10.18452/3613
Permanent URL
https://doi.org/10.18452/3613
HTML
<a href="https://doi.org/10.18452/3613">https://doi.org/10.18452/3613</a>