Logo of Humboldt-Universität zu BerlinLogo of Humboldt-Universität zu Berlin
edoc-Server
Open-Access-Publikationsserver der Humboldt-Universität
de|en
Header image: facade of Humboldt-Universität zu Berlin
View Item 
  • edoc-Server Home
  • Schriftenreihen und Sammelbände
  • Fakultäten und Institute der HU
  • Wirtschaftswissenschaftliche Fakultät
  • Discussion papers of interdisciplinary research project 373 / Sonderforschungsbereich 373
  • View Item
  • edoc-Server Home
  • Schriftenreihen und Sammelbände
  • Fakultäten und Institute der HU
  • Wirtschaftswissenschaftliche Fakultät
  • Discussion papers of interdisciplinary research project 373 / Sonderforschungsbereich 373
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.
All of edoc-ServerCommunity & CollectionTitleAuthorSubjectThis CollectionTitleAuthorSubject
PublishLoginRegisterHelp
StatisticsView Usage Statistics
All of edoc-ServerCommunity & CollectionTitleAuthorSubjectThis CollectionTitleAuthorSubject
PublishLoginRegisterHelp
StatisticsView Usage Statistics
View Item 
  • edoc-Server Home
  • Schriftenreihen und Sammelbände
  • Fakultäten und Institute der HU
  • Wirtschaftswissenschaftliche Fakultät
  • Discussion papers of interdisciplinary research project 373 / Sonderforschungsbereich 373
  • View Item
  • edoc-Server Home
  • Schriftenreihen und Sammelbände
  • Fakultäten und Institute der HU
  • Wirtschaftswissenschaftliche Fakultät
  • Discussion papers of interdisciplinary research project 373 / Sonderforschungsbereich 373
  • View Item
2005-10-17Buch DOI: 10.18452/3618
How to Improve the Performances of DEA/FDHEstimators in the Presence of Noise?
Simar, Léopold
In frontier analysis, most of the nonparametric approaches (DEA, FDH) are based on envelopment ideas which suppose that with probability one, all the observed units belong to the attainable set. In these "deterministic" frontier models, statistical theory is now mostly available. In the presence of noise, this is no more true and envelopment estimators could behave dramatically since they are very sensitive to extreme observations that could result only from noise. DEA/FDH techniques would provide estimators with an error of the order of the standard deviation of the noise. In this paper we propose to adapt some recent results on detecting change points, to improve the performances of the classical DEA/FDH estimators in the presence of noise. We show by simulated examples that the procedure works well when the noise is of moderate size, in term of noise to signal ratio. It turns out that the procedure is also robust to outliers.
Files in this item
Thumbnail
33.pdf — Adobe PDF — 301.9 Kb
MD5: 5a9ef9b91577f48ad7c01a858a13de20
Cite
BibTeX
EndNote
RIS
InCopyright
Details
DINI-Zertifikat 2019OpenAIRE validatedORCID Consortium
Imprint Policy Contact Data Privacy Statement
A service of University Library and Computer and Media Service
© Humboldt-Universität zu Berlin
 
DOI
10.18452/3618
Permanent URL
https://doi.org/10.18452/3618
HTML
<a href="https://doi.org/10.18452/3618">https://doi.org/10.18452/3618</a>