Logo of Humboldt-Universität zu BerlinLogo of Humboldt-Universität zu Berlin
edoc-Server
Open-Access-Publikationsserver der Humboldt-Universität
de|en
Header image: facade of Humboldt-Universität zu Berlin
View Item 
  • edoc-Server Home
  • Schriftenreihen und Sammelbände
  • Fakultäten und Institute der HU
  • Wirtschaftswissenschaftliche Fakultät
  • Discussion papers of interdisciplinary research project 373 / Sonderforschungsbereich 373
  • View Item
  • edoc-Server Home
  • Schriftenreihen und Sammelbände
  • Fakultäten und Institute der HU
  • Wirtschaftswissenschaftliche Fakultät
  • Discussion papers of interdisciplinary research project 373 / Sonderforschungsbereich 373
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.
All of edoc-ServerCommunity & CollectionTitleAuthorSubjectThis CollectionTitleAuthorSubject
PublishLoginRegisterHelp
StatisticsView Usage Statistics
All of edoc-ServerCommunity & CollectionTitleAuthorSubjectThis CollectionTitleAuthorSubject
PublishLoginRegisterHelp
StatisticsView Usage Statistics
View Item 
  • edoc-Server Home
  • Schriftenreihen und Sammelbände
  • Fakultäten und Institute der HU
  • Wirtschaftswissenschaftliche Fakultät
  • Discussion papers of interdisciplinary research project 373 / Sonderforschungsbereich 373
  • View Item
  • edoc-Server Home
  • Schriftenreihen und Sammelbände
  • Fakultäten und Institute der HU
  • Wirtschaftswissenschaftliche Fakultät
  • Discussion papers of interdisciplinary research project 373 / Sonderforschungsbereich 373
  • View Item
2005-10-17Buch DOI: 10.18452/3632
Nonparametric and Semiparametric Estimation of Additive Models with both Discrete and Continuous Variables under Dependence
Camlong-Viot, Christine
Rodríguez-Póo, Juan M.
Vieu, Philippe
This paper is concerned with the estimation and inference of nonparametric and semiparametric additive models in the presence of discrete variables and dependent observations. Among the different estimation procedures, the method introduced by Linton and Nielsen, based in marginal integration, has became quite popular because both its computational simplicity and the fact that it allows an asymptotic distribution theory. Here, an asymptotic treatment of the marginal integration estimator under different mixtures of continuous-discrete variables is offered, and furthermore, in the semiparametric partially additive setting, an estimator for the parametric part that is consistent and asymptotically efficient is proposed. The estimator is based in minimizing the L2 distance between the additive nonparametric component and its correspondent linear direction. Finally, we present an application to show the feasibility of all methods introduced in the paper.
Files in this item
Thumbnail
38.pdf — Adobe PDF — 221.8 Kb
MD5: 85c210a8f4291037dfad0ad538c65c44
Cite
BibTeX
EndNote
RIS
InCopyright
Details
DINI-Zertifikat 2019OpenAIRE validatedORCID Consortium
Imprint Policy Contact Data Privacy Statement
A service of University Library and Computer and Media Service
© Humboldt-Universität zu Berlin
 
DOI
10.18452/3632
Permanent URL
https://doi.org/10.18452/3632
HTML
<a href="https://doi.org/10.18452/3632">https://doi.org/10.18452/3632</a>