Logo of Humboldt-Universität zu BerlinLogo of Humboldt-Universität zu Berlin
edoc-Server
Open-Access-Publikationsserver der Humboldt-Universität
de|en
Header image: facade of Humboldt-Universität zu Berlin
View Item 
  • edoc-Server Home
  • Schriftenreihen und Sammelbände
  • Fakultäten und Institute der HU
  • Wirtschaftswissenschaftliche Fakultät
  • Discussion papers of interdisciplinary research project 373 / Sonderforschungsbereich 373
  • View Item
  • edoc-Server Home
  • Schriftenreihen und Sammelbände
  • Fakultäten und Institute der HU
  • Wirtschaftswissenschaftliche Fakultät
  • Discussion papers of interdisciplinary research project 373 / Sonderforschungsbereich 373
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.
All of edoc-ServerCommunity & CollectionTitleAuthorSubjectThis CollectionTitleAuthorSubject
PublishLoginRegisterHelp
StatisticsView Usage Statistics
All of edoc-ServerCommunity & CollectionTitleAuthorSubjectThis CollectionTitleAuthorSubject
PublishLoginRegisterHelp
StatisticsView Usage Statistics
View Item 
  • edoc-Server Home
  • Schriftenreihen und Sammelbände
  • Fakultäten und Institute der HU
  • Wirtschaftswissenschaftliche Fakultät
  • Discussion papers of interdisciplinary research project 373 / Sonderforschungsbereich 373
  • View Item
  • edoc-Server Home
  • Schriftenreihen und Sammelbände
  • Fakultäten und Institute der HU
  • Wirtschaftswissenschaftliche Fakultät
  • Discussion papers of interdisciplinary research project 373 / Sonderforschungsbereich 373
  • View Item
2006-01-12Buch DOI: 10.18452/3678
Comparison of Nonparametric Goodness of Fit Tests
Läuter, Henning
Sachsenweger, Cornelia
We consider two tests for testing the hypothesis that a density lies in a parametric class of densities and compare them by means of simulation. Both considered tests are based on the integrated squared distance of the kernel density estimator from its hypothetical expectation. However, different kernels are used. The unknown parameter will be replaced by its maximum-likelihood-estimation (m.l.e.). The power of both tests will be examined under local alternatives. Although both tests are asymptotically equivalent, it will be shown that there is a difference between the power of both tests when a finite number of random variables is used. Furthermore it will be shown that asymptotically equivalent approximations of the power can differ significantly when finite sample sizes are used.
Files in this item
Thumbnail
2.pdf — Adobe PDF — 275.0 Kb
MD5: 35c1d7793667de1ac5428993998b3838
Cite
BibTeX
EndNote
RIS
InCopyright
Details
DINI-Zertifikat 2019OpenAIRE validatedORCID Consortium
Imprint Policy Contact Data Privacy Statement
A service of University Library and Computer and Media Service
© Humboldt-Universität zu Berlin
 
DOI
10.18452/3678
Permanent URL
https://doi.org/10.18452/3678
HTML
<a href="https://doi.org/10.18452/3678">https://doi.org/10.18452/3678</a>