Logo of Humboldt-Universität zu BerlinLogo of Humboldt-Universität zu Berlin
edoc-Server
Open-Access-Publikationsserver der Humboldt-Universität
de|en
Header image: facade of Humboldt-Universität zu Berlin
View Item 
  • edoc-Server Home
  • Schriftenreihen und Sammelbände
  • Fakultäten und Institute der HU
  • Wirtschaftswissenschaftliche Fakultät
  • Discussion papers of interdisciplinary research project 373 / Sonderforschungsbereich 373
  • View Item
  • edoc-Server Home
  • Schriftenreihen und Sammelbände
  • Fakultäten und Institute der HU
  • Wirtschaftswissenschaftliche Fakultät
  • Discussion papers of interdisciplinary research project 373 / Sonderforschungsbereich 373
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.
All of edoc-ServerCommunity & CollectionTitleAuthorSubjectThis CollectionTitleAuthorSubject
PublishLoginRegisterHelp
StatisticsView Usage Statistics
All of edoc-ServerCommunity & CollectionTitleAuthorSubjectThis CollectionTitleAuthorSubject
PublishLoginRegisterHelp
StatisticsView Usage Statistics
View Item 
  • edoc-Server Home
  • Schriftenreihen und Sammelbände
  • Fakultäten und Institute der HU
  • Wirtschaftswissenschaftliche Fakultät
  • Discussion papers of interdisciplinary research project 373 / Sonderforschungsbereich 373
  • View Item
  • edoc-Server Home
  • Schriftenreihen und Sammelbände
  • Fakultäten und Institute der HU
  • Wirtschaftswissenschaftliche Fakultät
  • Discussion papers of interdisciplinary research project 373 / Sonderforschungsbereich 373
  • View Item
1998-11-01Buch DOI: 10.18452/3682
Testing for Linear Autoregressive Dynamics under Heteroskedasticity
Hafner, Christian
Herwartz, Helmut
One puzzling behavior of asset returns for various frequencies is the often observed positive autocorrelation at lag 1. To some extent this can be explained by standard asset pricing models when assuming time varying risk premia. However, one often finds better results when directly fitting an autoregressive model, for which there is little economic foundation. One may ask whether the underlying process does in fact contain an autoregressive component. It is therefore of interest to have a statistical test at hand that performs well under the stylized facts of financial returns. In this paper, we investigate empirical properties of competing devices to test for autoregressive dynamics in case of heteroskedastic errors. For the volatility process we assume GARCH, TGARCH and stochastic volatility. The results indicate that standard QML inference for the autoregressive parameter is negatively affected by misspecification of the volatility process. We show that bootstrapped versions of a likelihood ratio and White’s t-statistic have better size properties and comparable power properties. Applied to German stock data, the alternative tests in many cases yield very different p-values.
Files in this item
Thumbnail
7.pdf — Adobe PDF — 258.9 Kb
MD5: 828e6b8b27ac74d6077bae7ab6c38187
Cite
BibTeX
EndNote
RIS
InCopyright
Details
DINI-Zertifikat 2019OpenAIRE validatedORCID Consortium
Imprint Policy Contact Data Privacy Statement
A service of University Library and Computer and Media Service
© Humboldt-Universität zu Berlin
 
DOI
10.18452/3682
Permanent URL
https://doi.org/10.18452/3682
HTML
<a href="https://doi.org/10.18452/3682">https://doi.org/10.18452/3682</a>