Logo of Humboldt-Universität zu BerlinLogo of Humboldt-Universität zu Berlin
edoc-Server
Open-Access-Publikationsserver der Humboldt-Universität
de|en
Header image: facade of Humboldt-Universität zu Berlin
View Item 
  • edoc-Server Home
  • Schriftenreihen und Sammelbände
  • Fakultäten und Institute der HU
  • Wirtschaftswissenschaftliche Fakultät
  • Discussion papers of interdisciplinary research project 373 / Sonderforschungsbereich 373
  • View Item
  • edoc-Server Home
  • Schriftenreihen und Sammelbände
  • Fakultäten und Institute der HU
  • Wirtschaftswissenschaftliche Fakultät
  • Discussion papers of interdisciplinary research project 373 / Sonderforschungsbereich 373
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.
All of edoc-ServerCommunity & CollectionTitleAuthorSubjectThis CollectionTitleAuthorSubject
PublishLoginRegisterHelp
StatisticsView Usage Statistics
All of edoc-ServerCommunity & CollectionTitleAuthorSubjectThis CollectionTitleAuthorSubject
PublishLoginRegisterHelp
StatisticsView Usage Statistics
View Item 
  • edoc-Server Home
  • Schriftenreihen und Sammelbände
  • Fakultäten und Institute der HU
  • Wirtschaftswissenschaftliche Fakultät
  • Discussion papers of interdisciplinary research project 373 / Sonderforschungsbereich 373
  • View Item
  • edoc-Server Home
  • Schriftenreihen und Sammelbände
  • Fakultäten und Institute der HU
  • Wirtschaftswissenschaftliche Fakultät
  • Discussion papers of interdisciplinary research project 373 / Sonderforschungsbereich 373
  • View Item
2006-01-19Buch DOI: 10.18452/3701
Estimation of a Function with Discontinuities via Local Polynomial Fit with an Adaptive Window Choice
Spokoiny, Vladimir
We propose a method of adaptive estimation of a regression function and which is near optimal in the classical sense of the mean integrated error. At the same time, the estimator is shown to be very sensitive to discontinuities or change-points of the underlying function f or its derivatives. For instance, in the case of a jump of a regression function, beyond the interval of length (in order) n-1 log n around change-points the quality of estimation is essentially the same as if locations of jumps were known. The method is fully adaptive and no assumptions are imposed on the design, number and size of jumps. The results are formulated in a non-asymptotic way and can be therefore applied for an arbitrary sample size.
Files in this item
Thumbnail
1.pdf — Adobe PDF — 355.2 Kb
MD5: 73576e3b9efe507872cff19bede60619
Cite
BibTeX
EndNote
RIS
InCopyright
Details
DINI-Zertifikat 2019OpenAIRE validatedORCID Consortium
Imprint Policy Contact Data Privacy Statement
A service of University Library and Computer and Media Service
© Humboldt-Universität zu Berlin
 
DOI
10.18452/3701
Permanent URL
https://doi.org/10.18452/3701
HTML
<a href="https://doi.org/10.18452/3701">https://doi.org/10.18452/3701</a>