Logo of Humboldt-Universität zu BerlinLogo of Humboldt-Universität zu Berlin
edoc-Server
Open-Access-Publikationsserver der Humboldt-Universität
de|en
Header image: facade of Humboldt-Universität zu Berlin
View Item 
  • edoc-Server Home
  • Schriftenreihen und Sammelbände
  • Fakultäten und Institute der HU
  • Wirtschaftswissenschaftliche Fakultät
  • Discussion papers of interdisciplinary research project 373 / Sonderforschungsbereich 373
  • View Item
  • edoc-Server Home
  • Schriftenreihen und Sammelbände
  • Fakultäten und Institute der HU
  • Wirtschaftswissenschaftliche Fakultät
  • Discussion papers of interdisciplinary research project 373 / Sonderforschungsbereich 373
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.
All of edoc-ServerCommunity & CollectionTitleAuthorSubjectThis CollectionTitleAuthorSubject
PublishLoginRegisterHelp
StatisticsView Usage Statistics
All of edoc-ServerCommunity & CollectionTitleAuthorSubjectThis CollectionTitleAuthorSubject
PublishLoginRegisterHelp
StatisticsView Usage Statistics
View Item 
  • edoc-Server Home
  • Schriftenreihen und Sammelbände
  • Fakultäten und Institute der HU
  • Wirtschaftswissenschaftliche Fakultät
  • Discussion papers of interdisciplinary research project 373 / Sonderforschungsbereich 373
  • View Item
  • edoc-Server Home
  • Schriftenreihen und Sammelbände
  • Fakultäten und Institute der HU
  • Wirtschaftswissenschaftliche Fakultät
  • Discussion papers of interdisciplinary research project 373 / Sonderforschungsbereich 373
  • View Item
2006-01-20Buch DOI: 10.18452/3710
Functional coefficient autoregressive models
estimation and tests of hypotheses
Chen, Rong
In this paper we study nonparametric estimation and hypothesis testing procedures for the functional coefficient AR (FAR) models of the form Xt = f1(Xt-d)Xt-1 +…+ fp(Xt-d)Xt-p +εt, first proposed by Chen and Tsay (1993). As a direct generalization of the linear AR model, the FAR model is a rich class of models that includes many successful parametric nonlinear time series models such as the threshold AR models of Tong (1983), exponential AR models of Haggan and Ozaki (1978) and many others. We propose a local linear estimation procedure for estimating the coefficient functions and study its asymptotic properties. In addition, we propose two testing procedures. The first one tests whether all the coefficient functions are constant (i.e. whether the process is linear). The second one tests if all the coefficient functions are continuous, (i.e. if any threshold type of nonlinearity presents in the process). Some simulation results are presented.
Files in this item
Thumbnail
10.pdf — Adobe PDF — 259.2 Kb
MD5: 8cbd3a5de613ea5e78b508c05648b231
Cite
BibTeX
EndNote
RIS
InCopyright
Details
DINI-Zertifikat 2019OpenAIRE validatedORCID Consortium
Imprint Policy Contact Data Privacy Statement
A service of University Library and Computer and Media Service
© Humboldt-Universität zu Berlin
 
DOI
10.18452/3710
Permanent URL
https://doi.org/10.18452/3710
HTML
<a href="https://doi.org/10.18452/3710">https://doi.org/10.18452/3710</a>