Logo of Humboldt-Universität zu BerlinLogo of Humboldt-Universität zu Berlin
edoc-Server
Open-Access-Publikationsserver der Humboldt-Universität
de|en
Header image: facade of Humboldt-Universität zu Berlin
View Item 
  • edoc-Server Home
  • Schriftenreihen und Sammelbände
  • Fakultäten und Institute der HU
  • Wirtschaftswissenschaftliche Fakultät
  • Discussion papers of interdisciplinary research project 373 / Sonderforschungsbereich 373
  • View Item
  • edoc-Server Home
  • Schriftenreihen und Sammelbände
  • Fakultäten und Institute der HU
  • Wirtschaftswissenschaftliche Fakultät
  • Discussion papers of interdisciplinary research project 373 / Sonderforschungsbereich 373
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.
All of edoc-ServerCommunity & CollectionTitleAuthorSubjectThis CollectionTitleAuthorSubject
PublishLoginRegisterHelp
StatisticsView Usage Statistics
All of edoc-ServerCommunity & CollectionTitleAuthorSubjectThis CollectionTitleAuthorSubject
PublishLoginRegisterHelp
StatisticsView Usage Statistics
View Item 
  • edoc-Server Home
  • Schriftenreihen und Sammelbände
  • Fakultäten und Institute der HU
  • Wirtschaftswissenschaftliche Fakultät
  • Discussion papers of interdisciplinary research project 373 / Sonderforschungsbereich 373
  • View Item
  • edoc-Server Home
  • Schriftenreihen und Sammelbände
  • Fakultäten und Institute der HU
  • Wirtschaftswissenschaftliche Fakultät
  • Discussion papers of interdisciplinary research project 373 / Sonderforschungsbereich 373
  • View Item
2006-02-02Buch DOI: 10.18452/3740
Semiparametric Estimation and Prediction for Time Series Cross Sectional Data
Bunke, Olaf
This paper discusses a methodology which uses time series cross sectional datafor the estimation of a time dependent regression function depending on explanatory variables and for the prediction of values of the dependent variable. The methodology assumes independent observations and is based on an adaptive semiparametric regression estimate depending on the observations from an adaptive running time window. The adaptation consists in the selection of the length (or horizon) of such a window together with one of numerous alternative parametric, nonparametric, additive and semiparametric estimators by minimization of a cross-validation criterion. In the prediction case the window contains only actual and past observations. It is shown, how to asses the influence of explanatory variables by generalized coefficients of determination which are adapted to the special objective of the statistical analysis. This aspect and our regression methodology is illustrated in the case of an analysis of stock market returns. An extended semiparametric methodology is also presented which allows the estimation of additive individual effects and which may essentially improve a traditional panel data analysis.
Files in this item
Thumbnail
48.pdf — Adobe PDF — 264.0 Kb
MD5: c4ef3d82dab0b002ab1ecb800e478504
Notes
Cite
BibTeX
EndNote
RIS
InCopyright
Details
DINI-Zertifikat 2019OpenAIRE validatedORCID Consortium
Imprint Policy Contact Data Privacy Statement
A service of University Library and Computer and Media Service
© Humboldt-Universität zu Berlin
 
DOI
10.18452/3740
Permanent URL
https://doi.org/10.18452/3740
HTML
<a href="https://doi.org/10.18452/3740">https://doi.org/10.18452/3740</a>