Logo of Humboldt-Universität zu BerlinLogo of Humboldt-Universität zu Berlin
edoc-Server
Open-Access-Publikationsserver der Humboldt-Universität
de|en
Header image: facade of Humboldt-Universität zu Berlin
View Item 
  • edoc-Server Home
  • Schriftenreihen und Sammelbände
  • Fakultäten und Institute der HU
  • Wirtschaftswissenschaftliche Fakultät
  • Discussion papers of interdisciplinary research project 373 / Sonderforschungsbereich 373
  • View Item
  • edoc-Server Home
  • Schriftenreihen und Sammelbände
  • Fakultäten und Institute der HU
  • Wirtschaftswissenschaftliche Fakultät
  • Discussion papers of interdisciplinary research project 373 / Sonderforschungsbereich 373
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.
All of edoc-ServerCommunity & CollectionTitleAuthorSubjectThis CollectionTitleAuthorSubject
PublishLoginRegisterHelp
StatisticsView Usage Statistics
All of edoc-ServerCommunity & CollectionTitleAuthorSubjectThis CollectionTitleAuthorSubject
PublishLoginRegisterHelp
StatisticsView Usage Statistics
View Item 
  • edoc-Server Home
  • Schriftenreihen und Sammelbände
  • Fakultäten und Institute der HU
  • Wirtschaftswissenschaftliche Fakultät
  • Discussion papers of interdisciplinary research project 373 / Sonderforschungsbereich 373
  • View Item
  • edoc-Server Home
  • Schriftenreihen und Sammelbände
  • Fakultäten und Institute der HU
  • Wirtschaftswissenschaftliche Fakultät
  • Discussion papers of interdisciplinary research project 373 / Sonderforschungsbereich 373
  • View Item
1998-07-02Buch DOI: 10.18452/3745
Properties of the Nonparametric Autoregressive Bootstrap
Franke, Jürgen
Kreiss, Jens-Peter
Mammen, Enno
Neumann, Michael H.
We prove geometric ergodicity and absolute regularity of the nonparametric autoregressive bootstrap process. To this end, we revisit this problem for nonparametric autoregressive processes and give some quantitative conditions (i.e., with explicit constants) under which the mixing coefficients of such processes can be bounded by some exponentially decaying sequence. This is achieved by using well-established coupling techniques. Then we apply the result to the bootstrap process and propose some particular estimators of the autoregression function and of the density of the innovations for which the bootstrap process has the desired properties. Moreover, by using some “decoupling” argument, we show that the stationary density of the bootstrap process converges to that of the original process. As an illustration, we use the proposed bootstrap method to construct simultaneous confidence bands and supremum-type tests for the autoregression function as well as to approximate the distribution of the least squares estimator in a certain parametric model.
Files in this item
Thumbnail
54.pdf — Adobe PDF — 313.7 Kb
MD5: ad1e332c44cfb55a68d4644f949fbfaa
Cite
BibTeX
EndNote
RIS
InCopyright
Details
DINI-Zertifikat 2019OpenAIRE validatedORCID Consortium
Imprint Policy Contact Data Privacy Statement
A service of University Library and Computer and Media Service
© Humboldt-Universität zu Berlin
 
DOI
10.18452/3745
Permanent URL
https://doi.org/10.18452/3745
HTML
<a href="https://doi.org/10.18452/3745">https://doi.org/10.18452/3745</a>