Logo of Humboldt-Universität zu BerlinLogo of Humboldt-Universität zu Berlin
edoc-Server
Open-Access-Publikationsserver der Humboldt-Universität
de|en
Header image: facade of Humboldt-Universität zu Berlin
View Item 
  • edoc-Server Home
  • Schriftenreihen und Sammelbände
  • Fakultäten und Institute der HU
  • Wirtschaftswissenschaftliche Fakultät
  • Discussion papers of interdisciplinary research project 373 / Sonderforschungsbereich 373
  • View Item
  • edoc-Server Home
  • Schriftenreihen und Sammelbände
  • Fakultäten und Institute der HU
  • Wirtschaftswissenschaftliche Fakultät
  • Discussion papers of interdisciplinary research project 373 / Sonderforschungsbereich 373
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.
All of edoc-ServerCommunity & CollectionTitleAuthorSubjectThis CollectionTitleAuthorSubject
PublishLoginRegisterHelp
StatisticsView Usage Statistics
All of edoc-ServerCommunity & CollectionTitleAuthorSubjectThis CollectionTitleAuthorSubject
PublishLoginRegisterHelp
StatisticsView Usage Statistics
View Item 
  • edoc-Server Home
  • Schriftenreihen und Sammelbände
  • Fakultäten und Institute der HU
  • Wirtschaftswissenschaftliche Fakultät
  • Discussion papers of interdisciplinary research project 373 / Sonderforschungsbereich 373
  • View Item
  • edoc-Server Home
  • Schriftenreihen und Sammelbände
  • Fakultäten und Institute der HU
  • Wirtschaftswissenschaftliche Fakultät
  • Discussion papers of interdisciplinary research project 373 / Sonderforschungsbereich 373
  • View Item
1998-11-09Buch DOI: 10.18452/3769
Semiparametric additive indices for binary response and generalized additive models
Härdle, Wolfgang Karl cc
Huet, Sylvie
Mammen, Enno
Sperlich, Stefan
Models are studied where the response Y and covariates X, T are assumed to fulfill E(Y|X; T) = G{XT β + α + m1(T1) + … + md(Td)}. Here G is a known (link) function, β is an unknown parameter, and m1, …, md are unknown functions. In particular, we consider additive binary response models where the response Y is binary. In these models, given X and T, the response Y has a Bernoulli distribution with parameter G{XT β + α + m1(T1) + … + md(Td)}. The paper discusses estimation of β and m1, …, md. Procedures are proposed for testing linearity of the additive components m1, …, md. Furthermore, bootstrap uniform confidence intervals for the additive components are introduced. The practical performance of the proposed methods is discussed in simulations and in two economic applications.
Files in this item
Thumbnail
95.pdf — Adobe PDF — 510.6 Kb
MD5: 4eaf1ba29b7e1d545e4e4029f4f46204
Cite
BibTeX
EndNote
RIS
InCopyright
Details
DINI-Zertifikat 2019OpenAIRE validatedORCID Consortium
Imprint Policy Contact Data Privacy Statement
A service of University Library and Computer and Media Service
© Humboldt-Universität zu Berlin
 
DOI
10.18452/3769
Permanent URL
https://doi.org/10.18452/3769
HTML
<a href="https://doi.org/10.18452/3769">https://doi.org/10.18452/3769</a>