Logo of Humboldt-Universität zu BerlinLogo of Humboldt-Universität zu Berlin
edoc-Server
Open-Access-Publikationsserver der Humboldt-Universität
de|en
Header image: facade of Humboldt-Universität zu Berlin
View Item 
  • edoc-Server Home
  • Schriftenreihen und Sammelbände
  • Fakultäten und Institute der HU
  • Wirtschaftswissenschaftliche Fakultät
  • Discussion papers of interdisciplinary research project 373 / Sonderforschungsbereich 373
  • View Item
  • edoc-Server Home
  • Schriftenreihen und Sammelbände
  • Fakultäten und Institute der HU
  • Wirtschaftswissenschaftliche Fakultät
  • Discussion papers of interdisciplinary research project 373 / Sonderforschungsbereich 373
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.
All of edoc-ServerCommunity & CollectionTitleAuthorSubjectThis CollectionTitleAuthorSubject
PublishLoginRegisterHelp
StatisticsView Usage Statistics
All of edoc-ServerCommunity & CollectionTitleAuthorSubjectThis CollectionTitleAuthorSubject
PublishLoginRegisterHelp
StatisticsView Usage Statistics
View Item 
  • edoc-Server Home
  • Schriftenreihen und Sammelbände
  • Fakultäten und Institute der HU
  • Wirtschaftswissenschaftliche Fakultät
  • Discussion papers of interdisciplinary research project 373 / Sonderforschungsbereich 373
  • View Item
  • edoc-Server Home
  • Schriftenreihen und Sammelbände
  • Fakultäten und Institute der HU
  • Wirtschaftswissenschaftliche Fakultät
  • Discussion papers of interdisciplinary research project 373 / Sonderforschungsbereich 373
  • View Item
2006-03-16Buch DOI: 10.18452/3786
A generic architecture for hybrid intelligent systems
Jacobsen, Hans-Arno
The integration of different learning and adaptation techniques in one architecture, to overcome individual limitations and achieve synergetic effects through hybridization or fusion of these techniques, has in recent years contributed to a large number of new intelligent system designs. Most of these approaches, however, follow an ad hoc design methodology, further justified by success in certain application domains. Due to the lack of a common framework it remains often difficult to compare the various systems conceptually and evaluate their performance comparatively. In this paper we first aim at classifying state-of-the-art intelligent systems, which have evolved over the past decade in the soft computing community. We identify four categories, based on the systems, overall architecture: (1) single component systems, (2) fusion-based systems, (3) hierarchical systems, and (4) hybrid systems. We then introduce a unifying paradigm, derived from concepts well known in the AI and agent community, as conceptual framework to better understand, modularize, compare and evaluate the individual approaches. We think it is crucial for the design of intelligent systems to focus on the integration and interaction of different learning techniques in one model rather then merging them to create ever new techniques. Two original instantiations of this framework are presented and discussed. Their performance is evaluated for prefetching of bulk data over wireless media.
Files in this item
Thumbnail
113.pdf — Adobe PDF — 213.6 Kb
MD5: d60a7b9222022836cfb709365d670a47
Cite
BibTeX
EndNote
RIS
InCopyright
Details
DINI-Zertifikat 2019OpenAIRE validatedORCID Consortium
Imprint Policy Contact Data Privacy Statement
A service of University Library and Computer and Media Service
© Humboldt-Universität zu Berlin
 
DOI
10.18452/3786
Permanent URL
https://doi.org/10.18452/3786
HTML
<a href="https://doi.org/10.18452/3786">https://doi.org/10.18452/3786</a>