Logo of Humboldt-Universität zu BerlinLogo of Humboldt-Universität zu Berlin
edoc-Server
Open-Access-Publikationsserver der Humboldt-Universität
de|en
Header image: facade of Humboldt-Universität zu Berlin
View Item 
  • edoc-Server Home
  • Schriftenreihen und Sammelbände
  • Fakultäten und Institute der HU
  • Wirtschaftswissenschaftliche Fakultät
  • Discussion papers of interdisciplinary research project 373 / Sonderforschungsbereich 373
  • View Item
  • edoc-Server Home
  • Schriftenreihen und Sammelbände
  • Fakultäten und Institute der HU
  • Wirtschaftswissenschaftliche Fakultät
  • Discussion papers of interdisciplinary research project 373 / Sonderforschungsbereich 373
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.
All of edoc-ServerCommunity & CollectionTitleAuthorSubjectThis CollectionTitleAuthorSubject
PublishLoginRegisterHelp
StatisticsView Usage Statistics
All of edoc-ServerCommunity & CollectionTitleAuthorSubjectThis CollectionTitleAuthorSubject
PublishLoginRegisterHelp
StatisticsView Usage Statistics
View Item 
  • edoc-Server Home
  • Schriftenreihen und Sammelbände
  • Fakultäten und Institute der HU
  • Wirtschaftswissenschaftliche Fakultät
  • Discussion papers of interdisciplinary research project 373 / Sonderforschungsbereich 373
  • View Item
  • edoc-Server Home
  • Schriftenreihen und Sammelbände
  • Fakultäten und Institute der HU
  • Wirtschaftswissenschaftliche Fakultät
  • Discussion papers of interdisciplinary research project 373 / Sonderforschungsbereich 373
  • View Item
1996-09-01Buch DOI: 10.18452/3793
Transformations of Additivity in Measurement Error Models
Eckert, R. Stephen
Carroll, Raymond J.
Wang, Naisyin
In many problems one wants to model the relationship between a response Y and a covariate X. Sometimes it is difficult, expensive, or even impossible to observe X directly, but one can instead observe a substitute variable W which is easier to obtain. By far the most common model for the relationship between the actual covariate of interest X and the substitute W is W = X + U, where the variable U represents measurement error. This assumption of additive measurement error may be unreasonable for certain data sets. We propose a new model, namely h(W) = h(X) + U, where h(.) is a monotone transformation function selected from some family H of monotone functions. The idea of the new model is that, in the correct scale, measurement error is additive. We propose two possible transformation families H. One is based of selecting a transformation which makes the within sample mean and standard deviation of replicated W’s uncorrelated. The second is based on selecting the transformation so that the errors (U’s) fit a prespecified distribution. Transformation families used are the parametric power transformations and a cubic spline family. Several data examples are presented to illustrate the methods.
Files in this item
Thumbnail
8.pdf — Adobe PDF — 177.9 Kb
MD5: 7a98fa7f69e64edcb9e2309749c82f10
Cite
BibTeX
EndNote
RIS
InCopyright
Details
DINI-Zertifikat 2019OpenAIRE validatedORCID Consortium
Imprint Policy Contact Data Privacy Statement
A service of University Library and Computer and Media Service
© Humboldt-Universität zu Berlin
 
DOI
10.18452/3793
Permanent URL
https://doi.org/10.18452/3793
HTML
<a href="https://doi.org/10.18452/3793">https://doi.org/10.18452/3793</a>